

System Impact Study SPP-2001-193
For Transmission Service
Requested By
Tex-La Electric Cooperative of
Texas, Inc.

From AEPW to ERCOTE

For a Reserved Amount Of 41MW
From 1/1/02
To 1/1/07

SPP Transmission Planning

Table of Contents

1. EXECUTIVE SUMMARY	1
2. INTRODUCTION	2
3. STUDY METHODOLOGY	3
A. DESCRIPTION B. MODEL UPDATES C. TRANSFER ANALYSIS	3 3
4. STUDY RESULTS	4
A. STUDY ANALYSIS RESULTS TABLE 1 – OVERLOADS CAUSED BY 41MW AEPW TO ERCOTE TRANSFER TABLE 2 – NON - SPP FACILITY OVERLOADS CAUSED BY THE AEPW TO ERCOTE 41MW TRANSFER TABLE 3 – PREVIOUSLY ASSIGNED AND IDENTIFIED SPP FACILITIES IMPACTED BY THE AEPW TO	5
ERCOTE 41MW Transfer	6
5. CONCLUSION	7
APPENDIX A	8

1. Executive Summary

Tex-La Electric Cooperative of Texas, Inc. has requested a system impact study for long-term Firm Point-to-Point transmission service from AEPW to ERCOTE. The period of the transaction is from 1/1/02 to 1/1/07. The request is for reservation 256409 for 41MW.

The principal objective of this study is to identify the restraints on the SPP Regional Tariff System that may limit the transfer to less than 41MW.

This study found no constraints limiting the 41MW transfer.

The import capability of ERCOTE is 600MW. With the 41MW transfer, this limit has been met through 6/01/2002.

2. Introduction

Tex-La Electric Cooperative of Texas, Inc has requested an impact study for transmission service from AEPW control area with a sink of ERCOTE.

The principal objective of this study is to identify the restraints on the SPP Regional Tariff System that may limit the transfer to less than 41MW. This study includes steady-state contingency analyses (PSS/E function ACCC) and Available Transfer Capability (ATC) analyses.

The steady-state analysis considers the impact of the 41MW transfer on transmission line loading and transmission bus voltages for outages of single and selected multiple transmission lines and transformers on the SPP system.

ATC analyses shows the amount of First Contingency Incremental Transfer Capabilities (FCITC) between the given study systems and what the limitations are, if any, for transferring up to 41MW.

3. Study Methodology

A. Description

Two analyses were conducted to determine the impact of the 41MW transfer on the system. The first analysis was conducted to identify any new overloads caused by the 41MW transfer. The second analysis was done to ensure that available capacity exists on previously identified circuits.

The first analysis was to study the steady-state analysis impact of the 41MW transfer on the SPP system. The second step was to study Available Transfer Capability (ATC) of the facilities identified in the steady-state analysis impact. The steady-state analysis was done to ensure current SPP Criteria and NERC Planning Standards requirements are fulfilled. The Southwest Power Pool (SPP) conforms to the NERC Planning Standards, which provide the strictest requirements, related to thermal overloads with a contingency. It requires that all facilities be within emergency ratings after a contingency.

The second analysis was done to determine the impact of the transfer on previously assigned and identified facilities.

B. Model Updates

SPP used nine seasonal models to study the 41MW request. The SPP 2001 Series Cases 2001/02 Winter Peak, 2002 Spring Peak, 2002 Summer Peak, 2002/03 Winter Peak, 2003 Spring Peak, 2004 Summer Peak, 2004/05 Winter Peak, 2006 Summer Peak, and 2006/07 Winter Peak were used to study the impact of the 41MW transfer on the SPP system during the transaction period of 1/1/02 to 1/1/07.

Seasonal Case	2001/02 Winter Peak	2002 Spring Peak	2002 Summer Peak	2002/03 Winter Peak	2003 Spring Peak
Abbreviation	01WP	02G	02SP	02WP	03G

Seasonal Case	2004 Summer Peak	2004/5 Winter Peak	2006 Summer Peak	2006/07 Winter Peak
Abbreviation	04SP	04WP	06SP	06WP

The chosen base case models were modified to reflect the most current modeling information. The cases were modified to reflect future firm transfers during the request period that were not already included in the January 2001 base case series models.

C. Transfer Analysis

Using the created models and the ACCC function of PSS\E, single and select double contingency outages were analyzed. Then full AC solution was used to obtain the most accurate results possible. Any facility overloaded, using MVA ratings, in the transfer case and not overloaded in the base case was flagged. The PSS/E options chosen to conduct the Impact Study analysis can be found in Appendix A.

4. Study Results

A. Study Analysis Results

<u>Table 1</u> shows the new facility overloads caused by the 41MW transfer. Upgrades associated with these new overloads can be directly assigned to the AEPW to ERCOTE 41MW transfer.

 $\underline{\text{Table 2}}$ documents overloads on Non SPP Regional Tariff participants' transmission systems caused by the 41MW transfer.

<u>Table 3</u> documents the 41MW transfer impact on previously assigned and identified facilities.

<u>Table 4</u> documents the previously confirmed reservations into ERCOTE totaling 559MW plus this 41MW request for the period 6/01/2001 to 6/01/2002.

<u>Table 1</u> – Overloads Caused by 41MW AEPW to ERCOTE Transfer

Study Year	From Area - To Area	Branch Over 100% Rate B	RATEB	BC % I Loading	TC % I Loading	Outaged Branch Causing Overload	ATC	Initial Limit, Available Solution and Cost, or Previous Assignment
	11100	Brunen Over 10070 Rate B	IWITED	Louding	Louding	Outaged Brunen Causing Overroud	1110	rissignment
All								
Study								
Periods		NONE				NONE		

$\underline{Table~2}-Non~\text{-}~SPP~Facility~Overloads~caused~by~the~AEPW~to~ERCOTE~41MW~Transfer$

Stu Ye	•	Branch Over 100% Rate B	Rate B	BC % I Loading	TC % I Loading	Outaged Branch That Caused Overload
A						
Stu	ly					
Peri	ods	NONE				NONE

<u>Table 3</u> – Previously Assigned and Identified SPP Facilities Impacted by the AEPW to ERCOTE 41MW Transfer.

Study Year	From Area - To Area	Branch Over 100% Rate B	Rate B	BC % I Loading	TC % I Loading	Outaged Branch That Caused Overload
All						
Study						
Periods		NONE				NONE

<u>**Table 4**</u> – Confirmed Reservations Into ERCOTE for 6/1/01 to 6/1/02

Request	From	То	POR	POD	Amount	Customer	Туре	Jun-01	Jul-01	Aug-01	Sep-01	Oct-01	Nov-01	Dec-01	Jan-02	Feb-02	Mar-02	Apr-02	May-02
213499	6/1/2001	6/1/2002	CLEC	ERCOTE	50	DYPM	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231124	2/5/2001	1/20/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50				
231125	2/5/2001	1/20/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50				
231669	6/1/2001	6/1/2002	CLEC	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231671	6/1/2001	6/1/2002	CLEC	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231672	6/1/2001	6/1/2002	CLEC	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231680	6/1/2001	6/1/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231681	6/1/2001	6/1/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231682	6/1/2001	6/1/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231683	6/1/2001	6/1/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
231684	6/1/2001	6/1/2002	AEPW	ERCOTE	50	AEMC	Yearly	50	50	50	50	50	50	50	50	50	50	50	50
239038	6/1/2001	6/1/2002	AEPW	ERCOTE	9	TNSK	Yearly	9	9	9	9	9	9	9	9	9	9	9	9
239061	1/20/2002	1/20/2003	CLEC	ERCOTE	50	AEMC	Yearly									50	50	50	50
239062	1/20/2002	1/20/2003	CLEC	ERCOTE	50	AEMC	Yearly									50	50	50	50
256409	1/01/2002	1/02/2007	AEPW	ERCOTE	41	TEXL	Yearly	41	41	41	41	41	41	41	41	41	41	41	41
		Т	otal Con	firmed Firr	n Service		Yearly	600	600	600	600	600	600	600	600	600	600	600	600

5. Conclusion

We found no facilities in SPP to restrict the requested AEPW to ERCOTE 41MW reservation; therefore, it will be accepted.

Appendix A

PSS/E CHOICES IN RUNNING LOAD FLOW PROGRAM AND ACCC

BASE CASES:

Solutions - Fixed sle	pe decoupled Newton-R	aphson solution	(FDNS)
-----------------------	-----------------------	-----------------	--------

- 1. Tap adjustment Stepping
- 2. Area interchange control Tie lines only
- 3. Var limits Apply immediately
- 4. Solution options \underline{X} Phase shift adjustment
 - _ Flat start
 - _ Lock DC taps
 - _ Lock switched shunts

ACCC CASES:

Solutions – AC contingency checking (ACCC)

- 1. MW mismatch tolerance -1.0
- 2. Contingency case rating Rate B
- 3. Percent of rating 100
- 4. Output code Summary
- 5. Min flow change in overload report 1mw
- 6. Excld cases w/ no overloads form report YES
- 7. Exclude interfaces from report NO
- 8. Perform voltage limit check YES
- 9. Elements in available capacity table 60000
- 10. Cutoff threshold for available capacity table 99999.0
- 11. Min. contng. case Vltg chng for report -0.02
- 12. Sorted output None

Newton Solution:

- 1. Tap adjustment Stepping
- 2. Area interchange control Tie lines only
- 3. Var limits Apply automatically
- 4. Solution options X Phase shift adjustment
 - _ Flat start
 - _ Lock DC taps
 - _ Lock switched shunts