

System Impact Study For Network Service Requested By City Utilities of Springfield

From 6/1/01 To 6/1/13

SPP Transmission Planning

Table of Contents

1.	EXECUTIVE SUMMARY	\$
2.	INTRODUCTION	;
3.	STUDY METHODOLOGY4	ŀ
	A. DESCRIPTION	4 1 1
4.	STUDY RESULTS	;
	A. STUDY ANALYSIS RESULTS	;),
	TABLE 2 - CITY UTILITIES OF SPRINGFIELD NETWORK FACILITIES WITH THERMAL LOADING ABOVE 100% RATE B)
5.	CONCLUSION	j
A	PPENDIX A17	,

<u>1. Executive Summary</u>

City Utilities of Springfield has requested a system impact study for Network Integration Transmission Service. The period of the Network Service is from 6/1/01 to 6/1/13. The request is for reservation 224310.

The principal objective of this study is to identify system constraints and potential system modifications necessary to provide the applied for Network Service while maintaining system reliability. The analysis in this document shows that no Network Facility upgrades were identified as being required to accommodate the City Utilities of Springfield Network Service. <u>Tables 1</u> and <u>2</u> document Network Facilities within City Utilities of Springfield identified as having voltage and thermal violations. <u>Table 3</u> summarizes the Network Facility Limits identified in the Generation Sensitivity Analysis. All identified facilities were mitigated either by an operating procedure, updating the model representation, or the addition of future transmission expansion.

<u>2. Introduction</u>

City Utilities of Springfield has requested an impact study for Network Integration Transmission Service. The transmission service runs from 6/1/01 to 6/1/13.

The principal objective of the study is to identify the restraints on the SPP Regional Tariff System, which includes the City Utilities of Springfield Transmission System that limit the Network Integration Transmission Service. This study includes a steady-state contingency analysis (PSS/E function ACCC) and PTI's MUST Generation Sensitivity Analysis.

The steady-state analysis considers transmission line loading and transmission bus voltages for outages of transmission lines and transformers on the City Utilities of Springfield system.

The Generation Sensitivity analysis shows the amount of First Contingency Incremental Transfer Capabilities (FCITC) between the specified designated Network Resources and Network Loads and what the limitations are, if any, for a given generation dispatch to serve load.

<u>3. Study Methodology</u>

A. Description

The system impact study consists of two analyses. PSS/E's ACCC steady-state contingency analysis was used to identify any system criteria violations on the City Utilities of Springfield Transmission System. Power Technologies Inc.'s MUST software Generation Sensitivity function was used to identify any SPP system overloads caused by the worst dispatch of the Designated Network Resources to serve the designated Network Load.

The steady-state analysis and generation sensitivity was done to ensure current SPP Criteria and NERC Planning Standards requirements are fulfilled as well as City Utilities' Criteria. The Southwest Power Pool (SPP) conforms to the NERC Planning Standards, which provide the strictest requirements, related to voltage violations and thermal overloads during normal conditions and during a contingency. It requires that all facilities be within normal operating ratings for normal system conditions and within emergency ratings after a contingency.

B. Model Updates

SPP used fourteen seasonal models to study the City Utilities of Springfield Network Integration Transmission Service. The SPP 2001 Series Cases used are as follows. The 2001 Summer Peak, 2001 Fall, 2001/02 Winter Peak, 2002 April (Spring Minimum), 2002 Spring Peak, 2002 Summer Peak, 2002 Fall Peak, 2002/03 Winter Peak, 2003 Spring Peak, 2004 Summer Peak, 2004/05 Winter Peak, 2006 Summer Peak, 2006/07 Winter Peak, and 2010 Summer Peak were used to study the impact of the Network Service on the SPP system during the transmission request period of 6/1/01 to 6/1/13.

The chosen base case models were modified to reflect the most current modeling information. The cases were modified to reflect future firm transfers during the request period that were not already included in the January 2001 base case series models. These modified models were then used in the steady-state contingency analysis. For the Generation Sensitivity analysis, the models were further adjusted to model the designated Network Resource of 51MW at KCPL's Montrose Generation Facility as a City Utilities of Springfield Generator and to scale down all City Utilities' designated Network Resources and Network Loads to model a 100MW transfer from the Network Resources to the Network Load.

C. Steady-state Contingency Analysis and Generation Sensitivity Analysis

Using the first set of created models and the ACCC function of PSS\E, single and select double contingency outages were analyzed to determine City Utilities' facility thermal and voltage violations during a contingency. The PSS/E options chosen to conduct the Impact Study analysis can be found in Appendix A.

The MUST Generation Sensitivity Analysis was used to determine any thermal constraints due to specific generation dispatches of the designated Network Resources. The analysis requires the modeling of a transfer, in this case the transfer from Network Resources to Network Load. To overcome this limitation, the power flow model was modified to provide room for a 100MW transfer as mentioned above in the model update section. The GSA function of MUST finds

dispatches that minimize the FCITC of a study transfer. The study transfer in this case is from the Designated Network Resources to the Designated Network Load.

4. Study Results

A. Study Analysis Results

<u>Tables 1</u> and <u>2</u> contain the analysis results of the steady-state contingency analysis. The tables identify the seasonal case in which the event occurred; the emergency rating of the overloaded circuit (Rate B) if applicable, the contingent loading percentage of the circuit or per unit voltage, and any solutions received from the transmission owners.

<u>Table 1</u> contains the voltage violations found above and below plus or minus five percent of the nominal voltages respectively for normal and contingency conditions. SPP criterion states that transmission system voltages must be maintained within plus or minus 10% of nominal voltage on load serving buses for contingency conditions. With respect to the SPP criteria, the voltages violations identified are within tolerance. In addition, the over and under voltages were seen by City Utilities as not being a problem.

<u>Table 2</u> contains the City Utilities' Network Facilities overloaded above 100% of their emergency ratings. The majority of the Network Facility limits identified can be removed due to updated transmission line ratings. The other identified Network Facilities without updated ratings have adequate mitigation plans to alleviate the overloads. The Kickapoo to Sunset 69kV line and James River to Twin Oaks 69kV line are scheduled to be reconductored by 2008 with new summer emergency ratings of 138MVA, which will cover the loading seen in the 2010 Summer Peak Model. The planned load transfer to the new Mentor substation in 2005 relieves the slight loading on the Mill 161/69kV transformers, the Norton 161/69kV transformer and the Main to Grand 69kV transmission line.

The remaining tables that follow <u>Tables 1</u> and <u>2</u> contain the results of the Generation Sensitivity Analysis. Limits were only found in Summer Peak Cases. <u>Table 3</u> contains the Network Facilities that limit the studied 100MW transfer from Network Resources to Network Load for all five of the summer peak cases studied. For each numbered constraint found in <u>Table 3</u>, a generation adjustment table documents the dispatches that cause these reduced FCITCs. The limitation of the MUST Generation Sensitivity is that it requires a transfer. To overcome this limitation, the models were adjusted appropriately to allow room for a 100MW transfer from the Network Resources to the Network Load.

For an explanation of the columns found in <u>Table 3</u> the following descriptions are included. The Worst Dispatch FCITC column contains the FCITC that results from the dispatch found in the Limiting Constraints Generator adjustments page. The Base FCITC is the FCITC that results from a dispatch using fixed generator participation factors, which are easily calculated from a generator's Pgen or Porig and Pmax and the total generation available for dispatch. The Study Flow column is the flow on the line when the Worst Dispatch FCITC number is used with fixed generator participation factors, which has a flow less than the limit. In addition, the fix generator participation factor dispatch has the specified OTDF shown in <u>Table 3</u>.

The majority of the limits identified in the Generation Sensitivity Analysis were also identified in the steady-state contingency analysis. In addition, all of the identified facilities have been removed as limits with the exception of the James River to Sunset 69kV line for the outage of the James River to Twin Oaks 69kV line in the 2004 and 2010 Summer Peak Cases. Even with an updated summer emergency rating of 80MVA, the worst case FCITC for the James River to Sunset 69kV line is 72MW for the 2004 Summer Peak Model and 91MW for the 2010 Summer Peak. These numbers can be calculated from the information found in <u>Table 3</u>. Examining the generation dispatch responsible for the lower FCITC, the generation adjustment tables show that the line is sensitive to ramping of the James River Power Station Unit 4 and 5. Cities Utilities of Springfield should be aware of this constraint and avoid generation dispatches as documented. The SPA Springfield 161/69kV transformer #2 was identified as a limit to the 100MW transfer in every seasonal case. SPA was contacted about the transformer limit and notified SPP that only transformers 1 and 3 exist at the SPA Springfield Sub and in the case of the outage of transformer 1 that transformer 3 would be taken off-line if overloaded.

<u>**Table 1**</u> – City Utilities of Springfield Network Facilities with Voltages above or below plus or minus 5% of Nominal (Voltages are within plus or minus 10% and meet SPP Criteria)

STUDY CASE	BUS WITH VOLTAGE VIOLATION	PU VOLTAGE	OUTAGED BRANCH
	MILL		MILL TO CLAY, 161KV
01SP	59962 MILL 5, 161KV	0.9372	59962 MILL 5 TO 59970 CLAY 5 CKT 1
	McCARTNEY		п
01SP	59968 MAC 5, 161KV	0.9439	
	NORTON		SUMMIT TO NORTON, 161KV
01SP	59967 NORTON 5, 161KV	0.9244	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
	NORTON		SUMMIT TO NORTON, 161KV
01FA	59967 NORTON 5, 161KV	0.9488	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
	NORTON		SUMMIT TO NORTON, 161KV
01WP	59967 NORTON 5, 161KV	0.9386	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
	JAMES RIVER		BASE CASE
02AP	59904 JRPS 2, 69KV	1.0531	BASE CASE, NO OUTAGE
	SOUTH HIGHWAY 65		"
02AP	59908 S HY65 2, 69KV	1.0519	
	HIGHWAY M		"
02AP	59909 HY M 2, 69KV	1.0558	
	GALLOWAY		"
02AP	59915 GALLOWY2, 69KV	1.0559	
	BLACKMAN		"
02AP	59916 BLACKMN2, 69KV	1.061	
	INGRAM		"
02AP	59917 INGRAM 2, 69KV	1.0656	
	MILL		"
02AP	59918 MILL 2, 69KV	1.0716	
	CHAD		"
02AP	59919 CHAD 2, 69KV	1.0669	
	HARGISS		"
02AP	59920 HARGISS2, 69KV	1.0656	
	MAIN		"
02AP	59921 MAIN 2, 69KV	1.0658	
	GRAND		"
02AP	59922 GRAND 2, 69KV	1.0611	
	MONROE		"
02AP	59923 MONROE 2, 69KV	1.0575	
02AP	59925 NICHOLS2, 69KV	1.0547	
0045		4 0500	
02AP	59926 FRISCO 2, 69KV	1.0566	
		1 0007	
02AP	59927 N HY13 2, 69KV	1.0637	
0045		4 0007	
02AP	59928 NORTON 2, 69KV	1.0687	
0045		4.007	"
UZAP	DEEDCADE	1.067	"
0045		4 0070	
02AP	59930 NEERGRD2, 69KV	1.0678	
0240		1 0004	-
		1 10681	

<u>**Table 1 continued**</u> – City Utilities of Springfield Network Facilities with Voltages above or below plus or minus 5% of Nominal (Voltages are within plus or minus 10% and meet SPP Criteria)

STUDY CASE	BUS WITH VOLTAGE VIOLATION	PU VOLTAGE	OUTAGED BRANCH
	PACKER		"
02AP	59932 PACKER 2, 69KV	1.0692	
	BROOKLINE		"
02AP	59984 BRKLNE 7, 345KV	1.0565	
	LAUREL		GOLDEN WEST TO LAUREL, 69KV
02AP	59924 LAUREL 2, 69KV	1.0738	59911 GOLDNW 2 TO 59924 LAUREL 2 CKT 1
	DAYTON		GOLDEN EAST TO DAYTON, 69KV
02AP	59913 DAYTON 2, 69KV	1.0545	59912 GOLDNE 2 TO 59913 DAYTON 2 CKT 1
	NICHOLS		LAUREL TO NICHOLS, 69KV
02AP	59925 NICHOLS2, 69KV	1.0754	59924 LAUREL 2 TO 59925 NICHOLS2 CKT 1
	COX		SPRINGFIELD (SWPA) TO GOLDEN WEST, 69KV
02AP	59910 COX 2, 69KV	1.0608	52694 SPRGFLD2 TO 59911 GOLDNW 2 CKT 1
	GOLDEN WEST		"
02AP	59911GOLDNW 2, 69KV	1.0633	
	LAUREL		"
02AP	59924 LAUREL 2, 69KV	1.0663	
	GOLDEN EAST		SPRINGFIELD (SWPA) TO GOLDEN EAST, 69KV
02AP	59912 GOLDNE 2, 69KV	1.0535	52694 SPRGFLD2 TO 59911 GOLDNE 2 CKT 1
			"
02AP	59913 DAYTON 2, 69KV	1.0536	
02G	NONE		
	NORTON		SUMMIT TO NORTON, 161KV
02SP	59967 NORTON 5, 161KV	0.9274	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
02FA	NONE		
	NORTON		SUMMIT TO NORTON, 161KV
02WP	59967 NORTON 5, 161KV	0.9426	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
	NORTON		SUMMIT TO NORTON, 161KV
03G	59967 NORTON 5, 161KV	0.9462	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
	NORTON		SUMMIT TO NORTON, 161KV
04SP	59967 NORTON 5, 161KV	0.9356	59966 SUMMIT 5 TO 59967 NORTON 5 CKT 1
0.04	NONE		
04VVP	NORTON		
0000		0.0050	SUMMIT TO NORTON, 161KV
065P		0.9352	
		0.0471	SUMMIT TO NORTON, INTRV
0000		0.9471	BASE CASE
10SP		1 0655	BASE CASE NO OUTAGE
1005		1.0000	SUMMIT TO NORTON 161KV
1090		0 0222	
1032	DEPORTON D, IDIKV	0.9233	DAADO SOIMIMIT DI LO DAADI MORION DI CRI I

STUDY YEAR	OVERLOADED BRANCH	Rate B <mva></mva>	% Loading	OUTAGED BRANCH	MITIGATION PLAN, SOLUTION
	NONE				
01SP					
	u				
01FA					
	n				
01WP					
	n				
02AP					
	n				
02G					
	н				
02SP					
	н				
02FA					
	H				
02WP					
	н				
03G					
	JAMES RIVER TO SUNSET, 69KV			JAMES RIVER TO TWIN OAKS, 69KV	Incorrect Rating in Case New Summer Emergency
04SP	59904 JRPS 2 TO 59907 SUNSET 2 CKT 1	73	101.8	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	Rating is 80MVA 8.8% Increase
	JAMES RIVER TO TWIN OAK, 69KV			SOUTHWEST PS #1 TO SOUTHWEST 161	Incorrect Rating in Case New Summer Emergency
04SP	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	99	101.5	59890 SWPS#1 1 TO BUS 59954 SWPS 5 CKT 1	Rating is 108MVA 9.1% Increase
	KICKAPOO TO SUNSET, 69KV			JAMES RIVER TO TWIN OAKS, 69KV	Incorrect Rating in Case New Summer Emergency
06SP	59906 KICKAPO2 TO 59907 SUNSET 2 CKT 1	98	107.0	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	Rating is 108MVA 10.2% Increase
	JAMES RIVER TO TWIN OAKS, 69KV			KICKAPOO TO SUNSET, 69KV	Incorrect Rating in Case New Summer Emergency
06SP	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	99	104.1	59906 KICKAPO2 TO 59907 SUNSET 2 CKT 1	Rating is 108MVA 9.1% Increase
	GOLDEN EAST TO DAYTON, 69KV			MAIN TO GRAND, 69KV	Incorrect Rating in Case New Summer Emergency
06SP	59912 GOLDNE 2 TO 59913* DAYTON 2 CKT1	60	103.6	59921 MAIN 2 TO 59922 GRAND 2 CKT 1	Rating is 108MVA 80% Increase
	KICKAPOO TO SUNSET, 69KV			JAMES RIVER TO TWIN OAKS, 69KV	Incorrect Rating in Case New Summer Emergency
10SP	59906 KICKAPO2 TO 59907 SUNSET 2 CKT 1	98	128.3	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	Rating is 108MVA 10.2% Increase
	JAMES RIVER TO TWIN OAKS, 69KV			KICKAPOO TO SUNSET	Incorrect Rating in Case New Summer Emergency
10SP	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	99	124.9	59906 KICKAPO2 TO 59907 SUNSET 2 CKT 1	Rating is 108MVA 9.1% Increase

<u>**Table 2**</u> - City Utilities of Springfield Network Facilities with Thermal Loading above 100% Rate B

STUDY YEAR	OVERLOADED BRANCH	Rate B <mva></mva>	% Loading	OUTAGED BRANCH	MITIGATION PLAN, SOLUTION
	"			MAIN TO GRAND, 69KV	
10SP		99	100.8	59921 MAIN 2 TO 59922 GRAND 2 CKT 1	п
	GOLDEN EAST TO DAYTON, 69KV			MAIN TO GRAND, 69KV	Incorrect Rating in Case New Summer Emergency
10SP	59912 GOLDNE 2 TO 59913* DAYTON 2 CKT1	60	124.3	59921 MAIN 2 TO 59922 GRAND 2 CKT 1	Rating is 108MVA 80% Increase
	"			JAMES RIVER 161/69KV XFMR	
10SP		60	108.3	59904 JRPS 2 TO 59961 JRPS 5 CKT 1	п
	"			JAMES RIVER TO TWIN OAKS, 69KV	
10SP		60	106.1	59904 JRPS 2 TO 59933 TWINOAK2 CKT 1	n
	п			COX TO GOLDED WEST, 69KV	
10SP		60	107.1	59910 COX 2 TO 59911 GOLDNW 2 CKT 1	п
	"			SPRINGFIELD(SWPA) TO GOLDEN WEST, 69KV	
10SP		60	106.7	52694 SPRGFLD2 TO 59911 GOLDNW 2 CKT 1	п
	п			GRAND TO MONROE, 69KV	
10SP		60	103.0	59922 GRAND 2 TO 59923 MONROE 2 CKT 1	п
	MAIN TO GRAND, 69KV			JAMES RIVER 161/69KV XFMR	Incorrect Rating in Case New Summer Emergency
10SP	59921 MAIN 2 TO 59922 GRAND 2 CKT 1	98	110.7	59904 JRPS 2 TO 59961 JRPS 5 CKT 1	Rating is 108MVA 10.2% Increase
	п			SPRINGFIELD(SWPA) TO GOLDEN EAST, 69KV	
10SP		99	101.2	52694 SPRGFLD2 TO 59911 GOLDNE 2 CKT 1	n
	DAYTON TO FORT, 69KV			MAIN TO GRAND, 69KV	Incorrect Rating in Case New Summer Emergency
10SP	59913 DAYTON 2 TO 59914 *FORT CKT 2	60	115.1	59921 MAIN 2 TO 59922 GRAND 2 CKT 1	Rating is 108MVA 80% Increase
	MILL TO PACKER, 69KV			NORTON TO NEERGARD, 69KV	Incorrect Rating in Case New Summer Emergency
10SP	59918 MILL 2 TO 59932 *PACKER 2 CKT1	65	110.2	59928 NORTON 2 TO 59930 NEERGRD2 CKT 1	Rating is 108MVA 66.2% Increase
	NORTON 161/69KV XFMR			MILL TO McCARTNEY, 161KV	Relieved By 20MW Load Shift To Mentor
10SP	59928 NORTON 2 TO 59967 *NORTON 5 CKT1, XFMR	134	100.3	59962 MILL 5 TO 59968 MAC 5 CKT 1	Substation
	MILL 161/69KV XFMR #2			MILL 161/69KV XFMR #1	Relieved By 20MW Load Shift To Mentor
10SP	59918 MILL 2 TO 59962 MILL 5 CKT 2	134	101.3	59918 MILL 2 TO 59962 MILL 5 CKT 1	Substation
	MILL 161/69KV XFMR #1			MILL 161/69KV XFMR #2	Relieved By 20MW Load Shift To Mentor
10SP	59918 MILL 2 TO 59962 MILL 5 CKT 1	134	101.3	59918 MILL 2 TO 59962 MILL 5 CKT 2	Substation
	INGRAM TO MILL, 69KV			BLACKMAN TO MILL, 69KV	Incorrect Rating in Case New Summer Emergency
10SP	59917 INGRAM 2 59918 MILL 2 CKT 1	64	101.0	59916 BLACKMN269 TO 59918 MILL 2 CKT 1	Rating is 80MVA 25% Increase

<u>**Table 2 continued**</u> – City Utilities of Springfield Network Facilities with Thermal Loading above 100% Rate B

	MUST Generation Sensitivity Analysis											
Study Case	Limiting Constraint	Worst Dispatch FCITC	Base FCITC	Limiting Facility	Initial Flow	Limit	Study Flow	OTDF	LODF	Outaged Facility	Mitigation Plan, Solutions	Owner
01SP	1	76	141	59904 JRPS 269.0 59907 SUNSET 269.0 1	63.5	73	68.6	0.0674	0.3560	59904 JRPS 269.0 59933 TWINOAK269.0 1	New Limit 80MVA New Worst Dispatch FCITC is 132MW	SPRM
02SP	2	84	196	59904 JRPS 269.0 59907 SUNSET 269.0 1	56.5	73	63.5	0.0840	0.3560	59904 JRPS 269.0 59933 TWINOAK269.0 1	New Limit 80MVA New Worst Dispatch FCITC is 120MW	SPRM
02SP	3	98	186	52692 SPRGFLD5 161 52694 SPRGFLD269.0 2	32.6	38	35.4	0.0291	0.1571	52692 SPRGFLD5 161 52694 SPRGFLD269.0	1 Not Valid	SPA
04SP	4	36	120	59904 JRPS 269.0 59907 SUNSET 269.0 1	65.9	73	68	0.0591	0.3560	59904 JRPS 269.0 59933 TWINOAK269.0 1	New Limit 80MVA New Worst Dispatch FCITC is 72	SPRM
06SP	5	1	2	52692 SPRGFLD5 161 52694 SPRGFLD269.0 2	37.9	38	38	0.0300	0.1569	52692 SPRGFLD5 161 52694 SPRGFLD269.0	1 Not Valid	SPA
06SP	6	64	64	59906 KICKAPO269.0 59907 SUNSET 269.0 1	-92.5	-98	-98	-0.0849	-1.0000	59904 JRPS 269.0 59933 TWINOAK269.0 1	New Limit 108MVA New Worst Dispatch FCITC is 183MW	SPRM
06SP	7	69	167	59904 JRPS 269.0 59907 SUNSET 269.0 1	59.5	73	65	0.0810	0.3560	59904 JRPS 269.0 59933 TWINOAK269.0 1	New Limit 80MV A New Worst Dispatch FCITC is 104MW	SPRM
06SP	8	72	144	52692 SPRGFLD5 161 52694 SPRGFLD269.0 2	34.4	38	36.2	0.0250	-0.1347	59924 LAUREL 269.0 59925 NICHOLS269.0 1	Not Valid	SPA

<u>**Table 3**</u> – City Utilities of Springfield Network Facilities identified as limits in the MUST Generation Sensitivity Analysis

	MUST Generation Sensitivity Analysis												
Study	Limiting	Worst Dispatch	Base	Limiting Facility	Initial Flow	1 : :4	Study	OTDE		Outomed For		Mitigation Plan, Solutions	0
Case	Constraint	FUIL	FUIL		Initial Flow	Limit	FIOW	UIDF	LODF	Outaged Fac	liity	Solutions	Owner
												New Limit 108MVA New Worst Dispatch	
06SP	9	76	76	59904 JRPS 269.0 59933 TWINOAK269.0 1	92.5	99	99	0.0849	-1.0000	59906 KICKA	PO269.0 59907 SUNSET 269.0 1	FCITC is 181MW	SPRM
0650	10	97	286		51 1	60	53.8	0.0310	0 3373	50021 MAIN	260.0.50022 CPAND 260.0.1	New Limit 108MVA New Worst Dispatch FCITC is	SDDW
003F	10	07	200	39913 DATTON 209:0 399141 ORT 209:0 1	51.1	00	55.0	0.0310	0.3272	3992 T MAIN	209.0 39922 GRAND 209.0 1	55410100	SF IXIVI
10SP	11	10	19	52692 SPRGFLD5 161 52694 SPRGFLD269.0 2	37.5	38	37.8	0.0264	0.0878	59904 JRPS	269.0 59905 PLAINVI269.0 1	Not Valid	SPA
10SP	12	56	103	59904 JRPS 269.0 59907 SUNSET 269.0 1	62.1	73	68	0.1063	0.3560	59904 JRPS	269.0 59933 TWINOAK269.0 1	New Limit 80MVA New Worst Dispatch FCITC is 91MW	SPRM
												New Limit 108MVA New Worst Dispatch FCITC is	
TUSP	13	59	97	59904 JKPS 269.0 59933 TWINOAK269.0 1	86	99	93.9	0.1346	0.3408	59904 JKPS	269.0 59907 SUNSET 269.0 1	100MW	SPRM

<u>**Table 3 continued**</u> – City Utilities of Springfield Network Facilities identified as limits in the MUST Generation Sensitivity Analysis

ALLOT

2001 Summer Peak							
Generator Adjustments For Limiting Constraint							
Number 1							
James River PS to Sunset, 69KV							

	WOISL				
Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0		0	178	148.1	
59891 SWPSGT 112.5		0	104	45.8	
59892 MCCARTN113.0	N/A	N/A	N/A	N/A	N/A
59897 JRPS#3 113.8	6.9	0	41	34.1	41
59898 JRPS#4 113.8	10.2	0	56	45.8	56
59899 JRPS#5 113.8	20.9	0	97	76.1	97
59900 JRGT1 113.8	23.4	0	75	51.6	75
59901 JRGT2 113.8	14.7	0	80	51.6	66.3
57000 MONTSPRM22.0		0	51	42.4	-

2002 Summer Peak Generator Adjustments For Limiting Constraint Number 3 Springfield 161/69KV XFMR 2

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	28.8	0	178	149.2	178
59891 SWPSGT 112.5	57.9	0	104	46.1	104
59892 MCCARTN113.0		0	104	67.1	
59897 JRPS#3 113.8		0	41	34.4	
59898 JRPS#4 113.8		0	56	46.1	
59899 JRPS#5 113.8		0	97	29.1	
59900 JRGT1 113.8	3.2	0	75	52	55.2
59901 JRGT2 113.8		0	80	52	
57000 MONTSPRM22.0	8.2	0	51	42.8	51

2006 Summer Peak
Generator Adjustments For Limiting Constraint
Number 5
Springfield 161/69KV XFMR 2
•••

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	1.1	0	178	152.7	153.8
59891 SWPSGT 112.5		0	104	47.2	-
59892 MCCARTN113.0		0	104	68.6	-
59893 MCCARTN213.0		0	104	68.6	-
59897 JRPS#3 113.8		0	41	35.2	-
59898 JRPS#4 113.8		0	56	47.2	
59899 JRPS#5 113.8		0	97	22.1	-
59900 JRGT1 113.8		0	75	64.3	
59901 JRGT2 113.8		0	80	53.2	-
57000 MONTSPRM22.0		0	51	43.7	

2002 Summer Peak					
Generator Adjustments For Limiting Constraint					
Number 2					
James River PS to Sunset, 69KV					

	Worst				
Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0		0	178	149.2	
59891 SWPSGT 112.5		0	104	46.1	
59892 MCCARTN113.0		0	104	67.1	
59897 JRPS#3 113.8	5.8	0	41	34.4	40.1
59898 JRPS#4 113.8	9.9	0	56	46.1	56
59899 JRPS#5 113.8	67.9	0	97	29.1	97
59900 JRGT1 113.8		0	75	52	
59901 JRGT2 113.8		0	80	52	
57000 MONTSPRM22.0		0	51	42.8	

2004 Summer Peak Generator Adjustments For Limiting Constraint Number 4

James River PS to Sunset, 69KV

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0		0	178	150.8	
59891 SWPSGT 112.5		0	104	12.7	
59892 MCCARTN113.0		0	104	67.8	
59897 JRPS#3 113.8		0	41	34.7	
59898 JRPS#4 113.8	9.4	0	56	46.6	56
59899 JRPS#5 113.8	26.6	0	97	69.5	96
59900 JRGT1 113.8		0	75	63.5	
59901 JRGT2 113.8		0	80	63.5	
57000 MONTSPRM22.0		0	51	43.2	

2006 Summer Peak Generator Adjustments For Limiting Constraint Number 6

Kickapoo to Sunset, 69KV

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	25.3	0	178	152.7	178
59891 SWPSGT 112.5	39.1	0	104	47.2	86.2
59892 MCCARTN113.0		0	104	68.6	
59893 MCCARTN213.0		0	104	68.6	
59897 JRPS#3 113.8		0	41	35.2	
59898 JRPS#4 113.8		0	56	47.2	
59899 JRPS#5 113.8		0	97	22.1	
59900 JRGT1 113.8		0	75	64.3	
59901 JRGT2 113.8		0	80	53.2	
57000 MONTSPRM22.0		0	51	43.7	

Generation Adjustment Tables For Limits Found In Generation Sensitivity Analysis

2006 Summer Peak Generator Adjustments For Limiting Constraint Number 7

James River to Sunset, 69KV

	worst				
Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0		0	178	152.7	
59891 SWPSGT 112.5		0	104	47.2	-
59892 MCCARTN113.0		0	104	68.6	-
59893 MCCARTN213.0		0	104	68.6	-
59897 JRPS#3 113.8	5.8	0	41	35.2	41
59898 JRPS#4 113.8	8.8	0	56	47.2	56
59899 JRPS#5 113.8	54.1	0	97	22.1	76.2
59900 JRGT1 113.8		0	75	64.3	-
59901 JRGT2 113.8		0	80	53.2	-
57000 MONTSPRM22.0		0	51	43.7	

2006 Summer Peak Generator Adjustments For Limiting Constraint Number 9 James River to Twin Oaks, 69KV

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	25.3	0	178	152.7	178
59891 SWPSGT 112.5		0	104	47.2	-
59892 MCCARTN113.0	35.4	0	104	68.6	104
59893 MCCARTN213.0	6.6	0	104	68.6	75.2
59897 JRPS#3 113.8		0	41	35.2	
59898 JRPS#4 113.8	8.8	0	56	47.2	56
59899 JRPS#5 113.8		0	97	22.1	
59900 JRGT1 113.8		0	75	64.3	
59901 JRGT2 113.8		0	80	53.2	
57000 MONTSPRM22.0		0	51	43.7	

2010 Summer Peak
Generator Adjustments For Limiting Constraint
Number 11
Springfield 161/69KV XFMR 2
Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	10.2	0	178	157.4	167.7
59891 SWPSGT 112.5		0	104	70.7	
59892 MCCARTN113.0		0	104	92	-
59893 MCCARTN213.0		0	184	162.7	-
59897 JRPS#3 113.8		0	41	36.3	-
59898 JRPS#4 113.8		0	56	48.6	-
59899 JRPS#5 113.8		0	97	14.4	-
59900 JRGT1 113.8		0	75	66.3	-
59901 JRGT2 113.8		0	80	70.7	
57000 MONTSPRM22.0		0	51	45.1	

2006 Summer Peak Generator Adjustments For Limiting Constraint Number 8 Springfield 161/69KV XFMR 2

	Worst				
Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	25.3	0	178	152.7	178
59891 SWPSGT 112.5	46.9	0	104	47.2	94.1
59892 MCCARTN113.0		0	104	68.6	
59893 MCCARTN213.0		0	104	68.6	
59897 JRPS#3 113.8		0	41	35.2	
59898 JRPS#4 113.8		0	56	47.2	
59899 JRPS#5 113.8		0	97	22.1	
59900 JRGT1 113.8		0	75	64.3	
59901 JRGT2 113.8		0	80	53.2	
57000 MONTSPRM22.0		0	51	43.7	

2006 Summer Peak Generator Adjustments For Limiting Constraint Number 10

Dayton to Fort, 69KV

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0	25.3	0	178	152.7	178
59891 SWPSGT 112.5	54	0	104	47.2	101.2
59892 MCCARTN113.0		0	104	68.6	
59893 MCCARTN213.0		0	104	68.6	
59897 JRPS#3 113.8		0	41	35.2	
59898 JRPS#4 113.8		0	56	47.2	
59899 JRPS#5 113.8		0	97	22.1	
59900 JRGT1 113.8		0	75	64.3	
59901 JRGT2 113.8		0	80	53.2	
57000 MONTSPRM22.0	7.3	0	51	43.7	51

2010 Summer Peak Generator Adjustments For Limiting Constraint Number 12 James River to Sunset, 69KV

Worst

Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0		0	178	157.4	
59891 SWPSGT 112.5		0	104	70.7	
59892 MCCARTN113.0		0	104	92	-
59893 MCCARTN213.0		0	184	162.7	-
59897 JRPS#3 113.8		0	41	36.3	-
59898 JRPS#4 113.8	7.3	0	56	48.6	56
59899 JRPS#5 113.8	48.2	0	97	14.4	61.6
59900 JRGT1 113.8		0	75	66.3	-
59901 JRGT2 113.8		0	80	70.7	
57000 MONTSPRM22.0		0	51	45.1	

Generation Adjustment Tables For Limits Found In Generation Sensitivity Analysis

2010 Summer Peak Generator Adjustments For Limiting Constraint Number 13 James River to Twin Oaks, 69KV

	Worst				
Generator bus	Dispatch	Pmin	Pmax	Porig	Pnew
59890 SWPS#1 120.0		0	178	157.4	
59891 SWPSGT 112.5		0	104	70.7	
59892 MCCARTN113.0		0	104	92	
59893 MCCARTN213.0		0	184	162.7	
59897 JRPS#3 113.8		0	41	36.3	
59898 JRPS#4 113.8	7.3	0	56	48.6	56
59899 JRPS#5 113.8	51.3	0	97	14.4	64.8
59900 JRGT1 113.8		0	75	66.3	
59901 JRGT2 113.8		0	80	70.7	
57000 MONTSPRM22.0		0	51	45.1	

5. Conclusion

The results of the study show that the applied for Network Integration Transmission Service by City Utilities of Springfield from 6/01/01 to 6/01/13 can be accepted without any assigned Network Facility Upgrades. The facilities identified in the System Impact Study were addressed and mitigated by SPA and City Utilities of Springfield.

Appendix A

PSS/E CHOICES IN RUNNING LOAD FLOW PROGRAM AND ACCC

BASE CASES:

Solutions - Fixed slope decoupled Newton-Raphson solution (FDNS)

- 1. Tap adjustment Stepping
- 2. Area interchange control Tie lines only
- 3. Var limits Apply immediately
- 4. Solution options \underline{X} Phase shift adjustment
 - _ Flat start
 - _Lock DC taps
 - _Lock switched shunts

ACCC CASES:

Solutions – AC contingency checking (ACCC)

- 1. MW mismatch tolerance -1.0
- 2. Contingency case rating Rate B
- 3. Percent of rating -100
- 4. Output code Summary
- 5. Min flow change in overload report -1 mw
- 6. Excld cases w/ no overloads form report YES
- 7. Exclude interfaces from report NO
- 8. Perform voltage limit check YES
- 9. Elements in available capacity table 60000
- 10. Cutoff threshold for available capacity table 99999.0
- 11. Min. contng. case Vltg chng for report -0.02
- 12. Sorted output None

Newton Solution:

- 1. Tap adjustment Stepping
- 2. Area interchange control Tie lines only
- 3. Var limits Apply automatically
- 4. Solution options \underline{X} Phase shift adjustment
 - _ Flat start
 - _ Lock DC taps
 - _Lock switched shunts