Screening Study SPP-LTSR-2014-005 11/21/2014 SPP Engineering, SPP Transmission Service Studies # **Table of Contents** | Table of Contents | 1 | |-------------------------------|---| | Executive Summary | 2 | | Introduction | 3 | | Study Methodology | 4 | | Description | 4 | | Model Development | 5 | | Transmission Request Modeling | 5 | | Transfer Analysis | 5 | | Study Results | 6 | | Study Analysis Results | 6 | | Conclusion | 7 | | Appendix A | 8 | | BASE CASE SETTINGS: | 8 | | ACCC CASE SETTINGS: | 8 | ### **Executive Summary** City Utilities of Springfield, MO has requested a Screening Study to determine the impacts on SPP facilities due to the Long Term Service Requests for 200 MW. The service type requested for this screening study is Long Term Service Request (LTSR). OASIS# 80202670 was studied as one request from 1/1/2017 to 1/1/2037. The principal objective of this study is to identify system problems and potential system modifications necessary to facilitate the LTSR request while maintaining system reliability. The LTSR request was studied using two system scenarios. The service was modeled by the transfers from MPS to SPRM. The two scenarios were studied to capture system limitations caused or impacted by the requested service. An analysis was conducted on the planning horizon from 1/1/2017 to 1/1/2037. The service was modeled from MPS to SPRM. Facilities on the SPP system were identified for the requested service due to the SPP Study Methodology criteria. Tables 1 and 2 summarize the results of the screening study analysis for the transfers for the scenarios listed in the table. Table 1 lists SPP thermal transfer limitations identified. Table 2 lists SPP voltage transfer limitations identified. Table 3 lists the network upgrades required to mitigate the limitations impacted by this request. ### Introduction City Utilities of Springfield, MO has requested a screening study to determine the impacts on SPP facilities for the Long Term Service Requests for 200 MW. The purpose of the LTSR Option Screening Study is to provide the Eligible Customer with an approximation of the transmission remediation costs of each potential LTSR and a reasonable cost differential between alternatives for the purpose of an Eligible Customer's ranking of its potential LTSRs. The results of the Screening Study are not binding and the Eligible Customer retains the rights to enter the Aggregate Transmission Service Study. The Screening Study results will not assess the third party impacts and upgrades required. Service will not be granted based on the Screening Study for potential LTSRs on the Transmission System. To obtain a Service Agreement, Eligible Customers must apply for service and follow the application process set forth in Parts II and III of the Tariff. This study includes steady-state contingency analysis (PSS/E function ACCC). The steady-state analysis considers the impact of the request on transmission line and transformer loadings for outages of single transmission lines, transformers, and generating units, and selected multiple transmission lines and transformers on the SPP and first-tier third party systems. The LTSR request was studied using two system scenarios. The service was modeled by a transfer from MPS to SPRM. The two scenarios were studied to capture the system limitations caused or impacted by the requested service. Scenario 0 includes projected usage of transmission service included in the SPP 2014 Series Cases. Scenario 5 includes transmission service not already included in the SPP 2014 Series Cases. # Study Methodology ### **Description** The facility study analysis was conducted to determine the steady-state impact of the requested service on the SPP system. The steady-state analysis was performed to ensure current SPP Criteria and NERC Reliability Standards requirements are fulfilled. SPP conforms to NERC Reliability Standards, which provide strict requirements related to voltage violations and thermal overloads during normal conditions and during a contingency. NERC Standards require all facilities to be within normal operating ratings for normal system conditions and within emergency ratings after a contingency. Normal operating ratings and emergency operating ratings monitored are Rate A and B in the SPP Model Development Working Group (MDWG) models, respectively. The upper bound and lower bound of the normal voltage range monitored is 105% and 95%. The upper bound and lower bound of the emergency voltage range monitored is 105% and 90%. Transmission Owner voltage monitoring criteria is used if more restrictive. The SPS Tuco 230 kV bus voltage is monitored at 92.5% due to pre-determined system stability limitations. The WERE Wolf Creek 345 kV bus voltage is monitored at 103.5% and 98.5% due to transmission operating procedure. The contingency set includes all SPP control area branches and ties 69 kV and above; first tier non-SPP control area branches and ties 115 kV and above; any defined contingencies for these control areas; and generation unit outages for the control areas with SPP reserve share program redispatch. The monitor elements include all SPP control area branches, ties, and buses 69 kV. and above,. Voltage monitoring was performed for SPP control area buses 69 kV and above. A 3 % transfer distribution factor (TDF) cutoff was applied to all SPP control area facilities. For voltage monitoring, a 0.02 per unit change in voltage must occur due to the transfer or modeling upgrades to be considered a valid limit to the transfer. ### **Model Development** SPP used six seasonal models to study the MPS to SPRM 200 MW request for the requested service period. The following SPP Transmission Expansion Plan 2014 Build 1 Cases were used to study the impact of the requested service on the transmission system: 2020 Summer Peak (20SP) 2020/21 Winter Peak (20WP) 2025 Summer Peak (25SP) 2025/26 Summer Peak (25SP) The Summer Peak models apply to June through September, and the Winter Peak models apply to December through March. The chosen base case models were modified to reflect the current modeling information. One group of requests was developed from the aggregate to model the requested service. From the seasonal models, two system scenarios were developed. Scenario 0 includes projected usage of transmission included in the SPP 2014 Series Cases. Scenario 5 includes transmission service not already included in the SPP 2014 Series Cases. ### **Transmission Request Modeling** Network Integration Transmission Service requests are modeled as Generation to Load transfers in addition to Generation to Generation because the requested Network Integration Transmission Service is a request to serve network load with the new designated network resource, and the impacts on the Transmission System are determined accordingly. Generation to Generation transfers are accomplished by developing a post-transfer case for comparison by dispatching the request source and redispatching the request sink. ### **Transfer Analysis** Using the selected cases both with and without the requested transfer modeled, the PSS/E Activity ACCC was run on the cases and compared to determine the facility overloads caused or impacted by the transfer. Transfer distribution factor cutoffs and voltage threshold (0.02 change) were applied to determine the impacted facilities. The PSS/E options chosen to conduct the analysis can be found in Appendix A. # **Study Results** ### **Study Analysis Results** Tables 1 and 2 contain the initial steady-state analysis results of the LTSR. The tables are attached to the end of this report, if applicable. The tables identify the scenario and season in which the event occurred, the transfer amount studied, the facility control area location, applicable ratings of the thermal transfer limitations and voltage transfer limitations, and the loading percentage and voltage per unit (pu). Table 1 lists the SPP thermal transfer limitations caused or impacted by the 200 MW requested transfers for applicable scenarios. Solutions are identified for the limitations in this table. Table 2 lists the SPP voltage transfer limitations caused or impacted by the 200 MW requested transfers for applicable scenarios. Solutions are identified for the violations in this table. Table 3 lists the network upgrades required to mitigate the limitations caused or impacted by this request. Engineering and construction costs are provided for assigned upgrades in this table. ### Conclusion The results of the screening study show that limiting constraints exist within the SPP regional transmission system for the requested transfer of 200 MW. The next steps are to WITHDRAW the request on OASIS and, if desired, enter a new OASIS request into the aggregate study queue. The results contained in this study are for informational purposes only. Service will not be granted based on the Screening Study results. To obtain a Service Agreement, Eligible Customers must apply for service and follow the application processes set forth in Parts II and III of the Tariff and enter the Aggregate Study process. The results of the Aggregate Study may vary from the results of this screening study. As a final step in this process, it is requested that the customer WITHDRAW the LTSR screening study request on OASIS. # Appendix A ### PSS/E CHOICES IN RUNNING LOAD FLOW PROGRAM AND ACCC | \mathbf{r} | A | CE | | | • | SET | TR | | • | |--------------|---|----|---|-------------|-----|------------|--------|---------|----| | к | Δ | •н | | | н ' | ` H |
11 | J (- ' | ٠. | | | _ | | • | 7. , | | |
 | | | | • Solutions: Fixed slope decoupled Newton-Raphson so | |--| |--| (FDNS) • Tap adjustment: Stepping Area Interchange Control: Tie lines and loads Var limits: Apply immediately • Solution Options: X Phase shift adjustment _ Flat
start _ Lock DC taps Lock switched shunts ### ACCC CASE SETTINGS: • Solutions: AC contingency checking (ACCC) MW mismatch tolerance: 0.5 System intact rating: Rate A Contingency case rating: Rate B Percent of rating: 100 Output code: Summary Min flow change in overload report: 3mw Excld cases w/ no overloads from report: YES Exclude interfaces from report: NO Perform voltage limit check: YES Elements in available capacity table: 60000 Cutoff threshold for available capacity 99999.0 table: Min. contng. Case Vltg chng for report: 0.02 Sorted output: None • Newton Solution: • Tap adjustment: Stepping • Area interchange control: Tie lines and loads (Disabled for generator outages) • Var limits: Apply immediately • Solution options: \underline{X} Phase shift adjustment _ Flat start _ Lock DC taps _ Lock switched shunts | 5 20SP SPRM BROOKLINE - JUNCTION 161KV CKT 1 118 2 17.85% BATTLEFIELD - MAIN 161KV CKT 1 BROOKLINE - JUNCTION 161KV CKT 1 5 28SP SPRM SPRM BROOKLINE - JUNCTION 161KV CKT 1 119.8 21.76% BATTLEFIELD - MAIN 161KV CKT 1 BROOKLINE - JUNCTION 161KV CKT 1 5 28SP SPRM SPRM BROOKLINE - JUNCTION 161KV CKT 1 109.9 17.45% BROOKLINE - SPRINGFIELD 161KV CKT 1 BROOKLINE - JUNCTION 161KV CKT 1 BROOKLINE - JUNCTION 161KV CKT 1 BROOKLINE - JUNCTION 161KV CKT 1 BROOKLINE - SPRM SPRM CRAND - MAIN 68KV CKT 1 136.4 19.98% JAMES RIVER (JRPSTXI) 1616913 2KV TRANSFORMER CKT GRAND - MAIN 68KV CKT 1 GRAND - MAIN 68KV CKT 1 136.4 19.98% LAUREL - NICHOLS 68KV CKT 1 GRAND - MAIN 68KV CKT 1 GRAND - MAIN 68KV CKT 1 GRAND - MAIN 68KV CKT 1 126.3 19.64% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 68KV CKT 1 GRAND - MAIN 68KV CKT 1 110.8 14.74% SPRM-MSL-03A GRAND - MAIN 68KV CKT 1 GRAND - MAIN 68KV CKT 1 110.5 3.96% JAMES RIVER (JRPSTXI) 1618913 2KV TRANSFORMER CKT GRAND - MAIN 68KV CKT 1 GRAND - MAIN 68KV CKT 1 10.25 3.96% JAMES RIVER (JR | Reconductor Brookline - Junction 161 kV; 1192 AAC with 954 ACSS/TW Reconductor Brookline - Junction 161 kV; 1192 AAC with 954 ACSS/TW Reconductor Brookline - Junction 161 kV; 1192 AAC with 954 ACSS/TW Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | |--|--| | S | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | S 205P SPRM SPRM GRAND - MAIN 69KV CKT 1 136.4 19.88% JAMES RIVER (JRPSTX!) 16169913.2kV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 136.0 19.64% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN GRAN | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8
ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | S 205P SPRM SPRM GRAND - MAIN 69KV CKT 1 136.4 19.98% 1 GRAND - MAIN 69KV CKT 1 136.0 19.64% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 126.3 19.64% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 126.3 19.64% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.8 14.74% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 10.8 14.74% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 10.8 14.68% BASE CASE GRAND - MAIN 69KV CKT 1 10.5 9.96% JAMES RIVER (JRPSTXI) 16169713 2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 10.5 9.96% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 10.3 9.92% JAMES RIVER (JRPSTXI) 16169713 2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 10.3 9.92% JAMES RIVER (JRPSTXI) 16169713 2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 10.9 | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 20SP SPRM SPRM GRAND - MAIN 69KV CKT 1 126.3 19.64% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 20SP SPRM SPRM GRAND - MAIN 69KV CKT 1 110.8 14.74% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 5 20SP SPRM SPRM GRAND - MAIN 69KV CKT 1 104.5 14.68% BASE CASE GRAND - MAIN 69KV CKT 1 0 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 110.5 9.96% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 5 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 109.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 115.2 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 115.2 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 115.2 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 115.2 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 115.2 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 20SP SPRM SPRM GRAND - MAIN 69KV CKT 1 110.8 14.74% SPRMMSL-03A GRAND - MAIN 69KV CKT 1 5 20SP SPRM SPRM GRAND - MAIN 69KV CKT 1 104.5 14.68% BASE CASE GRAND - MAIN 69KV CKT 1 0 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 110.5 9.96% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 109.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 5 25SP | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 20SP SPRM SPRM GRAND - MAIN 69KV CKT 1 104.5 14.68% BASE CASE GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 110.5 9.96% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 110.5 9.96% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 109.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN
- LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX1) 181/8913.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.4 23.49% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/89/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 <td< td=""><td>Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable</td></td<> | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | O 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 110.5 9.96% JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 109.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 129.4 23.49% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 161.69 / 13.26 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 161.69 / 13.26 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 161.69 / 13.26 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 161.69 / 13.26 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 161.69 / 13.26 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 161.69 / 13.26 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER CKT JA.28 / JAMES RIVER (JRPSTX 1) 161/69/13.2KV TRANSFORMER | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 0 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 110.5 9.96% 1 GRAND - MAIN 69KV CKT 1 5 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 109.3 9.92% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% 1 GRAND - MAIN 69KV CKT 1 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 116.2 | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 20WP SPRM SPRM GRAND - MAIN 69KV CKT 1 103.3 9.92% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% 1 GRAND - MAIN 69KV CKT 1 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 116.2 13.62% 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 116.2 13.62% 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 115.2 13.28% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRA | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.4 23.49% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 116.2 13.62% 1 GRAND - MAIN 69KV CKT JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW &
replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 129.4 23.49% 1 GRAND - MAIN 69KV CKT 1 129.4 23.49% 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 129.0 22.79% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 116.2 13.62% 13.62% 12.62% <td>Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable</td> | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 123.4 17.08% GEN549899 5-JAMES RIVER 5 GRAND - MAIN 69KV CKT 1 5 25SP SPRM SPRM SPRM GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 116.2 13.62% 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 115.2 13.28% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25SP SPRM SPRM GRAND - MAIN 69KV CKT 1 105.8 17.20% SPRM-MSL-03A GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM SPRM GRAND - MAIN 69KV CKT 1 116.2 13.62% 13.62% 13.62% 116.2 13.28% | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 116.2 13.62% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM SPRM GRAND - MAIN 69KV CKT 1 115.2 13.28% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 108.4 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 116.2 13.62% 1 GRAND - MAIN 69KV CKT 1 GRAND - MAIN 69KV CKT 1 115.2 13.28% LAUREL - NICHOLS 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | 5 25WP SPRM SPRM GRAND - MAIN 69KV CKT 1 108.4 13.28% GOLDEN - LAUREL 69KV CKT 1 GRAND - MAIN 69KV CKT 1 JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT | · | | JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM CU UG cable | | | | | 5 20SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 119.9 12.25% 1 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 119.0 9.17% GEN549899 5-JAMES RIVER 5 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 110.0 10.53% GRAND - MAIN 69KV CKT 1 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 102.8 9.47% SPRM-MSL-05 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 101.2 9.38% SPRM-MSL-03A NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 104.9 6.34% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 116.9 10.59% GEN549899 5-JAMES RIVER 5 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 114.7 14.31% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 105.8 12.18% GRAND - MAIN 69KV CKT 1 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25SP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 100.6 10.96% SPRM-MSL-05 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25WP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 110.4 8.49% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT NIXA - NX ESPY2 69.000 69KV CKT 1 110.4 8.49% 1 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25WP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 101.6 7.19% GRAND - MAIN 69KV CKT 1 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25WP SWPA SWPA NIXA - NX ESPY2 69.000 69KV CKT 1 100.8 7.28% LAUREL - NICHOLS 69KV CKT 1 NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA (NXA X2) 161/69/13.8KV TRANSFORMER CKT 1 157.8 4.29% NIXA (NXA X1) 161/69/13.8KV TRANSFORMER CKT 1 NIXA (NXA X2) 161/69/13.8KV TRANSFORMER CKT 1 | Replace Transformer with 70MVA | | 5 25SP SWPA SWPA NIXA (NXA X2) 161/69/13.8KV TRANSFORMER CKT 1 153.2 4.95% NIXA (NXA X1) 161/69/13.8KV TRANSFORMER CKT 1 NIXA (NXA X2) 161/69/13.8KV TRANSFORMER CKT 1 | Replace Transformer with 70MVA | | 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 133.0 9.17% GEN549899 5-JAMES RIVER 5 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 132.8 12.25% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 118.4 10.53% GRAND - MAIN 69KV CKT 1 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 107.3 9.47% SPRM-MSL-05 NIXA DT - NX ESPY2 69.000 69KV CKT 1 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 104.9 9.38% SPRM-MSL-03A NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 103.6 9.17% BASE CASE NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 102.1 9.54% SPRM-MSL-04 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 129.0 6.34% JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 116.2 5.53% LAUREL - NICHOLS 69KV CKT 1 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 114.6 4.76% GEN549893 2-SOUTHWEST 2 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 106.5 4.89% SPRM-MSL-05 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 105.8 4.77% AI03 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 105.1 4.76% BASE CASE NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 20WP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 104.4 4.82% SPRM-MSL-03A NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 125.0 10.59% GEN549899 5-JAMES RIVER 5 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 25SP SWPA SWPA NIXA DT - NX ESPY2 69.000 69KV CKT 1 121.2 14.31% 1 NIXA DT - NX ESPY2 69.000 69KV CKT 1 121.2 14.31% 1 NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25SP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 107.8 | 12.18% | GRAND - MAIN 69KV
CKT 1 | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | |---|------|-----------|--------------------------------------|-------|--------|--|--------------------------------------|-------------------| | 5 | 25SP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 100.2 | 10.96% | | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 134.7 | 8.49% | JAMES RIVER (JRPSTX1) 161/69/13.2KV TRANSFORMER CKT
1 | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 121.9 | 7.19% | GRAND - MAIN 69KV CKT 1 | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 120.8 | 7.28% | LAUREL - NICHOLS 69KV CKT 1 | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 113.3 | 6.28% | BASE CASE | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 110.9 | 6.48% | SPRM-MSL-05 | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 109.2 | 6.30% | AI03 | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | | 5 | 25WP | SWPA SWPA | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | 108.5 | 6.39% | SPRM-MSL-03A | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | 10 | Scenario Season | Area | Monitored Bus with Violation | Transfer
Case
Voltage (PU) | Outaged Branch Causing Overload | Upgrade Name | Solution | |-----------------|------|------------------------------|----------------------------------|---------------------------------|--------------|----------| Transmission
Owner | Upgrade | Solution | Earliest Date Upgrade
Required (DUN) | Estimated Date of
Upgrade Completion
(EOC) | Estimated Engineering & Construction Cost | |-----------------------|--------------------------------------|--|---|--|---| | SPRM | BROOKLINE - JUNCTION 161KV CKT 1 #2 | Reconductor Brookline - Junction 161 kV; 1192 AAC with 954 ACSS/TW | 6/1/2017 | 6/1/2019 | \$2,045,977 | | | | Reconductor 636 ACSR with 762.8 ACSS/TW & replace 1750 MCM AL UG with 2000 MCM | | | | | SPRM | GRAND - MAIN 69KV CKT 1 | CU UG cable | 6/1/2017 | 6/1/2019 | \$1,000,000 | | SPRM | NIXA - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | 6/1/2017 | 6/1/2017 | \$80,561 | | SPRM | NIXA DT - NX ESPY2 69.000 69KV CKT 1 | Replace Ct @ Nixa | 6/1/2017 | 6/1/2017 | \$80,561 | Construction Pending Projects - The requested service is contingent upon completion of the following upgrades. Cost is not assignable to the transmission customer. | Transmission
Owner | Upgrade | Solution | Earliest Date Upgrade
Required (DUN) | Estimated Date of
Upgrade Completion
(EOC) | Estimated Engineering & Construction Cost | |-----------------------|----------------------------------|----------|---|--|---| | | No Construction Pending Projects | | | | | Expansion Plan Projects - The requested service is contingent upon completion of the following upgrades. Cost is not assignable to the transmission customer. | Transmission
Owner | Upgrade | Solution | Earliest Date Upgrade
Required (DUN) | Estimated Date of
Upgrade Completion
(EOC) | |-----------------------|---------------------------|----------|---|--| | | No Expansion Plan Project | | | | Reliability Projects - The requested service is contingent upon completion of the following upgrades. Cost is not assignable to the transmission customer. | Transmission
Owner | Upgrade | Solution | Earliest Date Upgrade
Required (DUN) | Estimated Date of
Upgrade Completion
(EOC) | |-----------------------|---|--------------------------------|---|--| | SPRM | NIXA (NXA X2) 161/69/13.8KV TRANSFORMER CKT 1 | Replace Transformer with 70MVA | 6/1/2017 | 6/1/2019. | 15