

# System Impact Study SPP-2013-007 For Transmission Service Requested By: OGE

# From CSWS.ONETA to OKGE\_OKGE

For a Reserved Amount Of 150 MW From 5/1/2013 To 9/1/2013

> SPP IMPACT STUDY (SPP-2013-007) February 28, 2013 1 of 8

### **<u>1. Executive Summary</u>**

OGE has requested a system impact study for monthly firm transmission service from CSWS.ONETA to OKGE\_OKGE. The period of the transaction is from 5/1/2013 00:00 to 9/1/2013 00:00. The request is for reservation 77894215

The 150 MW transaction from CSWS.ONETA has an impact on the following flowgates with no AFC: REDARCREDARC, WDRCIMSPRNRW, ONEBANNESTUL, OKMHENOKMKEL, WELLYDWELNWT, ONEBANCLKCHA, and LYDIAVALIANT. To provide the AFC necessary for this transfer, the impact on these flowgates must be relieved.

After studying many scenarios using generation redispatch, there are several feasible scenarios that will relieve the flowgate(s) in question.

### 2. Introduction

OGE has requested a system impact study for transmission service from CSWS.ONETA to OKGE\_OKGE.

There are 7 constrained flowgates that require relief in order for this reservation to be accepted. The flowgates and the explanations are as follows:

- REDARCREDARC: Redbud Arcadia 345 kV ckt. 1 for the loss of the Redbud Arcadia 345 kV ckt. 2.
- WDRCIMSPRNRW: Woodring Cimarron 345 kV line for the loss of the Spring Creek NW Station 345 kV line.
- ONEBANNESTUL: Oneta Broken Arrow North 138 kV line for the loss of the NW Station Tulsa North 345 kV line.
- OKMHENOKMKEL: Okmulgee Henryetta 138 kV line for the loss of the Okmulgee Kelco 138 kV line.
- WELLYDWELNWT: Welsh Lydia 345 kV line for the loss of the Welsh NW Texarkana 345 kV line.
- ONEBANCLKCHA: Oneta Broken Arrow North 138 kV line for the loss of the Clarksville Chambers 345 kV line.
- LYDIAVALIANT: Lydia Valliant 345 kV line.

# 3. Study Methodology

#### A. Description

Southwest Power Pool used Transmission Adequacy & Reliability Assessment (TARA) to obtain possible unit pairings that would relieve the constraint. TARA calculates impacts on monitored facilities for all units within the Southwest Power Pool Footprint. The SPP ATC Calculator is used to determine response factors for the time period of the reservation.

#### B. Model Updates

The 2013 Southwest Power Pool model was used for the study. This model was updated to reflect the most current information available.

#### C. Transfer Analysis

Using the short-term calculator, the limiting constraints for the transfer are identified. The response factor of the transfer on each constraint is also determined.

The product of the transfer amount and the response factor is the impact of a transfer on a limiting flowgate that must be relieved. With multiple flowgates affected by a transfer, relief of the largest impact may also provide relief of smaller impacts.

Using Transmission Adequacy & Reliability Assessment (TARA), specific generator pairs are chosen to reflect the units available for redispatch. The quotient of the amount of impact that must be relieved and the generation sensitivity factor calculated by TARA is the amount of redispatch necessary to relieve the impact on the affected flowgate.

# 4. Study Results

After studying the impacts of the request, seven flowgates require relief. The flowgates and associated amount of relief are as follows:

#### Table 1

| Flowgate            | Duration            | Sensitivity | Required Relief |
|---------------------|---------------------|-------------|-----------------|
| Tiowgate            | Duration            | (70)        |                 |
| 5207 : REDARCREDARC | 5/1/2013 - 9/1/2013 | 16.2%       | 24              |
| 5214 : WDRCIMSPRNRW | 5/1/2013 - 9/1/2013 | 10.0%       | 15              |
| 5241 : ONEBANNESTUL | 5/1/2013 - 9/1/2013 | 6.6%        | 10              |
| 5242 : OKMHENOKMKEL | 5/1/2013 - 6/1/2013 | 3.4%        | 5               |
| 5320 : WELLYDWELNWT | 5/1/2013 - 6/1/2013 | 4.0%        | 6               |
| 5413 : ONEBANCLKCHA | 5/1/2013 - 9/1/2013 | 6.1%        | 9               |
| 5419 : LYDIAVALIANT | 5/1/2013 - 7/1/2013 | 5.3%        | 8               |

Table 2 displays a list of generator pairs that are possible relief options for each flowgates in question and the amount of redispatch capacity needed.

#### Table 2

| 5207 : REDARCREDARC |           |             |    |
|---------------------|-----------|-------------|----|
| Increment           | Decrement | Sensitivity | MW |
| Spring Creek        | Redbud    | 93.4%       | 26 |
| Mustang             | Redbud    | 86.9%       | 28 |
| Horseshoe Lake      | Redbud    | 86.9%       | 28 |
| Smith               | Redbud    | 86.8%       | 28 |
| Spring Creek        | Muskogee  | 35.4%       | 68 |
| Spring Creek        | AES       | 31.8%       | 76 |
| Mustang             | Muskogee  | 29.0%       | 83 |
| Horseshoe Lake      | Muskogee  | 28.9%       | 83 |
| Smith               | Muskogee  | 28.8%       | 83 |
| Mustang             | AES       | 25.4%       | 95 |
| Horseshoe Lake      | AES       | 25.3%       | 95 |
| Smith               | AES       | 25.2%       | 95 |

| 5214 : WDRCIMSPRNRW |               |             |    |
|---------------------|---------------|-------------|----|
| Increment           | Decrement     | Sensitivity | MW |
| McClain             | Sooner        | 48.2%       | 31 |
| Mustang             | Sooner        | 47.5%       | 32 |
| Smith               | Sooner        | 47.3%       | 32 |
| Seminole            | Sooner        | 46.5%       | 32 |
| McClain             | South 4th St. | 41.8%       | 36 |
| Mustang             | South 4th St. | 41.1%       | 36 |
| Smith               | South 4th St. | 41.0%       | 37 |
| Seminole            | South 4th St. | 40.2%       | 37 |

| 5241 : ONEBANNESTUL |                        |             |    |
|---------------------|------------------------|-------------|----|
| Increment           | Decrement              | Sensitivity | MW |
| NE Gas CSWS         | Calpine Oneta          | 22.0%       | 45 |
| NE Gas CSWS         | NE Coal CSWS           | 18.1%       | 55 |
| NE Gas CSWS         | Riverside Station CSWS | 15.4%       | 65 |
| NE Gas CSWS         | Tulsa Power CSWS       | 14.5%       | 69 |
| Flint Creek         | Calpine Oneta          | 13.5%       | 74 |
| NE Gas CSWS         | Redbud OKGE            | 13.0%       | 77 |
| NE Gas CSWS         | Muskogee OKGE          | 12.9%       | 78 |
| GRDA17 Unit 1       | NE Coal CSWS           | 12.6%       | 79 |
| GRDA17 Unit 2       | NE Coal CSWS           | 11.3%       | 89 |

| 5242 : OKMHENOKMKEL |                        |             |    |
|---------------------|------------------------|-------------|----|
| Increment           | Decrement              | Sensitivity | MW |
| Weleetka CSWS       | Riverside Station CSWS | 32.1%       | 16 |
| Weleetka CSWS       | Tulsa Power CSWS       | 30.9%       | 16 |
| Weleetka CSWS       | Calpine Oneta          | 29.8%       | 17 |
| Weleetka CSWS       | NE Coal CSWS           | 28.9%       | 17 |
| Weleetka CSWS       | NE Gas CSWS            | 28.6%       | 17 |
| Weleetka CSWS       | Muskogee               | 28.0%       | 18 |
| Seminole 1          | Riverside Station CSWS | 11.3%       | 44 |
| Seminole 1          | Tulsa Power CSWS       | 10.1%       | 49 |

| 5320 : WELLYDWELNWT |           |             |    |
|---------------------|-----------|-------------|----|
| Increment           | Decrement | Sensitivity | MW |
| Seminole            | AES       | 15.8%       | 38 |
| Tinker              | AES       | 13.9%       | 43 |
| McClain             | AES       | 13.8%       | 43 |
| Smith               | AES       | 13.4%       | 45 |
| Seminole            | Muskogee  | 11.9%       | 50 |
| Tinker              | Muskogee  | 10.0%       | 60 |
| McClain             | Muskogee  | 9.9%        | 61 |
| Smith               | Muskogee  | 9.4%        | 64 |

| 5413 : ONEBANCLKCHA    |                  |             |     |
|------------------------|------------------|-------------|-----|
| Increment              | Decrement        | Sensitivity | MW  |
| Tulsa Power CSWS       | Calpine Oneta    | 9.6%        | 93  |
| Riverside Station CSWS | Calpine Oneta    | 7.4%        | 121 |
| Tulsa Power CSWS       | NE Coal CSWS     | 6.8%        | 133 |
| Weleetka CSWS          | Calpine Oneta    | 5.9%        | 153 |
| Tulsa Power CSWS       | Coffeyville GRDA | 5.6%        | 160 |
| Horseshoe Lake         | Calpine Oneta    | 5.2%        | 172 |
| Seminole 1             | Calpine Oneta    | 5.1%        | 176 |

| 5419 : LYDIAVALIANT |           |             |    |
|---------------------|-----------|-------------|----|
| Increment           | Decrement | Sensitivity | MW |
| Seminole            | AES       | 20.2%       | 40 |
| Tinker              | AES       | 17.6%       | 45 |
| McClain             | AES       | 17.5%       | 46 |
| Smith               | AES       | 17.0%       | 47 |
| Seminole            | Muskogee  | 15.2%       | 52 |
| Tinker              | Muskogee  | 12.7%       | 63 |
| McClain             | Muskogee  | 12.6%       | 64 |
| Smith               | Muskogee  | 12.0%       | 66 |

## 5. Conclusion

Generation redispatch (and reservation curtailment) options were studied in order to relieve the necessary constraints. The results of this study shows that the constraints on the flowgates in question could be relieved by executing one or more of the options described in the Study Results section of this document. Before the Transmission Provider accepts the reservations, proof of the necessary relief options must be presented to Southwest Power Pool. Noncompliance with this guideline will result in the refusal of the reservation.