GEN-2011-040 & GEN-2012-004 Impact Restudy for Generator Modification (Turbine Change) SPP Generator Interconnection Studies GEN-2011-040 & GEN-2012-004 August 2013 ## **Executive Summary** This document reports on the findings of a restudy for the GEN-2011-040 & GEN-2012-004 interconnection requests which are both owned by the same interconnection customer. The two projects are collocated and share the same 34.5/345kV substation transformer and transmission line to the Point of Interconnection (POI). The interconnection customer has requested this restudy to determine the effects of changing wind turbine generators from the previously studied Siemens VS 2.3MW wind turbine generators to the Vestas V100 VCSS 2.0MW wind turbine generators. In this restudy the combined project uses seventy-five (75) Vestas 2.0MW wind turbine generators for an aggregate power of 150.0MW and is located in Murray County, Oklahoma. The interconnection request shows that the Vestas 2.0MW wind turbine generators will have +0.98/-0.96 power factor capabilities installed. The restudy showed that no stability problems were found during the summer or the winter peak conditions as a result of changing to the Vestas 2.0MW wind turbine generators. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A. A power factor analysis was not performed during this study. The power factor analysis from DISIS-2011-002 and DISIS-2012-001 each remain valid for this project. The facility will be required to maintain a 95% lagging (providing VARs) and 95% leading (absorbing VARs) power factor at the point of interconnection. The Interconnection Customer will be required to install capacitor banks to meet this requirement. It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list that can account for every operational situation. Additionally, the generator[s] may not be able to inject any power onto the Transmission System due to constraints that fall below the threshold of mitigation for a Generator Interconnection request. Because of this, it is likely that the Customer[s] may be required to reduce their generation output to 0 MW under certain system conditions to allow system operators to maintain the reliability of the transmission network. With the assumptions outlined in this report and with all the required network upgrades from the GEN-2011-040 & GEN-2012-004 Generator Interconnection Agreement (GIA) in place, GEN-2011-040 & GEN-2012-004 should be able to reliably interconnect to the SPP transmission grid. Nothing in this study should be construed as a guarantee of transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service shall be requested on Southwest Power Pool's OASIS by the Customer. #### 1.0 Introduction The interconnection customer has requested this restudy to determine the effects of changing wind turbine generators from the previously studied Siemens VS 2.3MW wind turbine generators to the Vestas V100 VCSS 2.0MW wind turbine generators. In this study SPP monitored the generators and transmission lines in Areas 520, 524, 525, 526, 531, 534, and 536. #### 2.0 Purpose The purpose of this impact restudy is to evaluate the effects of using Vestas 2.0MW wind turbine generators on the reliability of the Transmission System. # 3.0 Facilities #### 3.1 Customer Facility The customer's facility was studied with a total of seventy-five (75) Vestas 2.0MW wind turbine generators; the project has a maximum power output of 150.0MW. Figure 1 shows the equivalent facility one-line drawing. ## 3.2 Interconnection Facility The point of interconnection (POI) is at a new 138kV substation along the Pooleville – Ratliff 138kV transmission line located in Murray County, Oklahoma. Figure 1 shows the POI system topology one-line drawing. Figure 1: GEN-2011-040 & GEN-2012-004 Facility One-line Diagram ## 4.0 Stability Study Criteria FERC Order 661A Low Voltage Ride-Through Provisions (LVRT), which went into effect January 1, 2006, requires that wind generating plants remain in-service during 3-phase faults at the point of interconnection. This order may require a Static VAR Compensator (SVC) or STATCOM device be specified at the Customer facility to keep the wind generator on-line for the fault. Dynamic Stability studies performed as part of the System Impact Study will provide additional guidance as to whether the reactive compensation can be static or a portion must be dynamic (such as a SVC or STATCOM). # 5.0 Model Development GEN-2012-004 GEN-2013-007 Transient stability analysis was performed using modified versions of the 2012 series of Model Development Working Group (MDWG) dynamic study models representing the South Central Oklahoma (Group 14) geographical study area or group within the SPP footprint. This group contains the 2014 (summer and winter) and 2023 (summer) seasonal models or cases. The cases are then adapted to resemble the power flow study cases with regards to prior queued generation requests and topology. Finally the prior queued and study generation is dispatched into the SPP footprint. Initial simulations are then carried out for a no-disturbance run of twenty (20) seconds to verify the numerical stability of the model. Siemens PSS/E Version 32.1 was the software tool used to perform the impact restudy. For simulation purposes, the Customer's facility was simplified by using the equivalent model of the wind farm as shown in Figure 1. The data used to develop the equivalent wind farm model were supplied by the Customer. The Customer also supplied the PSS/E Version 32.1 stability models for the Vestas 2.0MW wind turbine generators. The Vestas generator provided showed a reactive power capability of +0.98/-0.96 power factor range. Equal and lower queued requests were included in the saved cases. The South Central Oklahoma (Group 14) requests are shown in Table 1. (562038) (560719) Tap Prices Fall - Carter 138kV line RequestSize (MW)Generator ModelPoint of InterconnectionGEN-2011-050109.8Vestas V90 VCSS 1.8MWTap Rush Springs - Marlow 138kV line (562081)GEN-2011-040 & CEN-2011-040 CE **Table 1: South Central Oklahoma GI Queued Projects** VCSS 2.0MW Vestas V100 VCSS 2.0MW 100.0 # 6.0 Stability Study Analysis Forty-eight (48) contingencies were considered for the transient stability simulations in this scenario. These contingencies included three phase faults and single phase line faults at locations defined by SPP. Single-phase line faults were simulated by applying a fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice. The faults that were defined and simulated are listed in Table 2. The faults were simulated on both the summer peak and the winter peak models. **Table 2: Contingency List** | Cont. | Cont. | Description | | | |-------|---|---|--|--| | No. | Name | - | | | | 1 | FLT_01_SUNNYSD7_LES7_345kV_3
PH | 3 phase fault on the Lawton East Side (511468) to Sunnyside (515136) 345kV CKT 1, near Sunnyside. a. Apply fault at the Sunnyside 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 2 | FLT_02_SUNNYSD7_LES7_345kV_1
PH | Single phase fault and sequence like previous | | | | 3 | FLT_03_SUNNYSD7_JOHNCO7_345
kV_3PH | 3 phase fault on the Johnson Co. (514809) to Sunnyside (515136) 345kV CKT 1, near Sunnyside. a. Apply fault at the Sunnyside 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 4 | FLT_04_SUNNYSD7_JOHNCO7_345
kV_1PH | Single phase fault and sequence like previous | | | | 5 | FLT_05_SUNNYSD7_HUGO7_345kV
_3PH | 3 phase fault on the Hugo (521157) to Sunnyside (515136) 345kV CKT 1, near Sunnyside. a. Apply fault at the Sunnyside 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 6 | FLT_06_SUNNYSD7_HUGO7_345kV
_1PH | Single phase fault and sequence like previous | | | | 7 | FLT_07_G11040TAP_RATLIFF4_138
kV_3PH | 3 phase fault on the GEN-2011-040 Tap (562038) to Ratliff (515129) 138kV CKT 1, near GEN-2011-040 Tap. a. Apply fault at the GEN-2011-040 Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | **Table 2: Contingency List** | Cont.
No. | Cont.
Name | Description | | | |--------------|---|---|--|--| | 8 | FLT_08_G11040TAP_RATLIFF4_138
kV 1PH | Single phase fault and sequence like previous | | | | 9 | FLT_09_G11040TAP_POOLVIL4_13
8kV_3PH | 3 phase fault on the GEN-2011-040 Tap (562038) to Pooleville (515130) 138kV CKT 1, near GEN-2011-040 Tap. a. Apply fault at the GEN-2011-040 Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 10 | FLT_10_G11040TAP_POOLVIL4_13
8kV_1PH | Single phase fault and sequence like previous | | | | 11 | FLT_11_ARBUCKL4_JOLLYVL4_138k
V_3PH | 3 phase fault on the Arbuckle (515117) to Jollyville (515118) 138kV CKT 1, near Arbuckle. a. Apply fault at the Arbuckle 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 12 | FLT_12_ARBUCKL4_JOLLYVL4_138k
V_1PH | Single phase fault and sequence like previous | | | | 13 | FLT_13_ARBUCKL4_MILLCKT4_138
kV_3PH | 3 phase fault on the Arbuckle (515117) to Mill Creek Tap (515121) 138kV CKT 1, near Arbuckle. a. Apply fault at the Arbuckle 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 14 | FLT_14_ARBUCKL4_MILLCKT4_138
kV 1PH | Single phase fault and sequence like previous | | | | 15 | FLT_15_ARBUCKL4_OAKLAW4_138
kV_3PH | | | | | 16 | FLT_16_ARBUCKL4_OAKLAW4_138
kV_1PH | Single phase fault and sequence like previous | | | | 17 | FLT_17_ARBUCKL4_BLUERIV4_138
kV_3PH | 3 phase fault on the Arbuckle (515117) to Blue River (515133) 138kV CKT 1, near Arbuckle. a. Apply fault at the Arbuckle 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 18 | FLT_18_ARBUCKL4_BLUERIV4_138
kV_1PH | Single phase fault and sequence like previous | | | **Table 2: Contingency List** | Cont.
No. | Cont.
Name | Description | | | |--------------|--|---|--|--| | 19 | FLT_19_ARBUCKL4_BERWYN4_138
kV_3PH | 3 phase fault on the Arbuckle (515117) to Berwyn (515173) 138kV CKT 1, near Arbuckle. a. Apply fault at the Arbuckle 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 20 | FLT_20_ARBUCKL4_BERWYN4_138
kV_1PH | Single phase fault and sequence like previous | | | | 21 | FLT_21_ARBUCKL4_VANOSS4_138
kV_3PH | 3 phase fault on the Arbuckle (515117) to Vanoss Sub (515174) 138kV CKT 1, near Arbuckle. a. Apply fault at the Arbuckle 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 22 | FLT_22_ARBUCKL4_VANOSS4_138
kV_1PH | Single phase fault and sequence like previous | | | | 23 | FLT_23_CARTER4_CHIKSAW4_138k
V_3PH | 3 phase fault on the Carter Tap (515138) to Chickasaw (515171) 138kV CKT 1, near Carter Tap. a. Apply fault at the Carter Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 24 | FLT_24_CARTER4_CHIKSAW4_138k
V_1PH | Single phase fault and sequence like previous | | | | 25 | FLT_25_CARTER4_ARDWEST4_138
kV_3PH | 3 phase fault on the Ardmore West (515372) to Carter Tap (515138 138kV CKT 1, near Carter Tap. a. Apply fault at the Carter Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | 26 | FLT_26_CARTER4_ARDWEST4_138
kV_1PH | Single phase fault and sequence like previous | | | | 27 | FLT_27_G13007TAP_CARTER4_138
kV_3PH | | | | | 28 | FLT_28_G13007TAP_CARTER4_138
kV_1PH | Single phase fault and sequence like previous | | | | 29 | FLT_29_CHIKSAW4_FNDTION4_13
8kV_3PH | 3 phase fault on the Chickasaw (515171) to Foundation (515162) 138kV CKT 1, near Chickasaw. a. Apply fault at the Chickasaw 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | **Table 2: Contingency List** | Cont.
No. | Cont.
Name | Description | | |--------------|---|---|--| | 30 | FLT_30_CHIKSAW4_FNDTION4_13
8kV_1PH | Single phase fault and sequence like previous | | | 31 | FLT_31_CHIKSAW4_TOTAL4_138kV
_3PH | 3 phase fault on the Chickasaw (515171) to Total Petr. (515165) 138kV CKT 1, near Chickasaw. a. Apply fault at the Chickasaw 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | 32 | FLT_32_CHIKSAW4_TOTAL4_138kV
1PH | Single phase fault and sequence like previous | | | 33 | FLT_33_G13007TAP_PRICESF4_138
kV_3PH | 3 phase fault on the GEN-2013-007 Tap (560719) to Prices Fall (514814) 138kV CKT 1, near GEN-2013-007 Tap. a. Apply fault at the GEN-2013-007 Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | 34 | FLT_34_G13007TAP_PRICESF4_138
kV_1PH | Single phase fault and sequence like previous | | | 35 | FLT_35_POOLVIL4_FOX4_138kV_3
PH | 3 phase fault on the Fox (515131) to Pooleville (515130) 138kV CKT 1, near Pooleville. a. Apply fault at the Pooleville 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | 36 | FLT_36_POOLVIL4_FOX4_138kV_1
PH | Single phase fault and sequence like previous | | | 37 | FLT_37_G11040TAP_SUNNYSD4_1
38kV_3PH | | | | 38 | FLT_38_G11040TAP_SUNNYSD4_1
38kV_1PH | Single phase fault and sequence like previous | | | 39 | FLT_39_SUNNYSD4_UNIROY4_138
kV_3PH | 3 phase fault on the Sunnyside (515135) to Uniroyal (515137) 138kV CKT 1, near Sunnyside. a. Apply fault at the Sunnyside 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | 40 | FLT_40_SUNNYSD4_UNIROY4_138
kV_1PH | Single phase fault and sequence like previous | | **Table 2: Contingency List** | Cont.
No. | Cont.
Name | Description | | | | |--------------|---|---|--|--|--| | 41 | FLT_41_SUNNYSD4_LONEGRV4_13
8kV_3PH | 3 phase fault on the Lone Grove (515144) to Sunnyside (515135) 138kV CKT 1, near Sunnyside. a. Apply fault at the Sunnyside 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | | 42 | FLT_42_SUNNYSD4_LONEGRV4_13
8kV_1PH | Single phase fault and sequence like previous | | | | | 43 | FLT_43_SUNNYSD4_ROCKYPT4_13
8kV_3PH | 3 phase fault on the Sunnyside (515135) to Rocky Point (515164) 138kV CKT 1, near Sunnyside. a. Apply fault at the Sunnyside 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | | 44 | FLT_44_SUNNYSD4_ROCKYPT4_13
8kV_1PH | Single phase fault and sequence like previous | | | | | 45 | FLT_45_RATLIFF4_PRARPNT4_138k
V_3PH | 3 phase fault on the Prairie Pt. (515134) to Ratliff (515129) 138kV CKT 1, near Ratliff. a. Apply fault at the Ratliff 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | | 46 | FLT_46_RATLIFF4_PRARPNT4_138k
V_1PH | Single phase fault and sequence like previous | | | | | 47 | FLT_47_SUNNYSD7_SUNNYSD4_34
5_138kV_3PH | 3 phase fault on the Sunnyside 345kV (515136) to 138kV (515135) to 13.8kV (515405) CKT 1, near Sunnyside 345kV. a. Apply fault at the Sunnyside 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. | | | | | 48 | FLT_48_RATLIFF4_RATLIFF2_138_6
9kV_3PH | 3 phase fault on the Ratliff 138kV (515129) to 69kV (515128) to 13.2kV (515752) CKT 1, near Ratliff 138kV. a. Apply fault at the Ratliff 138kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. | | | | | 49 | FLT_49_G11040TAP_RATLIFF4_138
kV_3PH_PO_SS_POI | Prior Outage of the GEN-2011-040 Tap — Sunnyside 138kV CKT 1. 3 phase fault on the GEN-2011-040 Tap (562038) to Ratliff (515129) 138kV CKT 1, near GEN-2011-040 Tap. a. Apply fault at the GEN-2011-040 Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | | | | 50 | FLT_50_G11040TAP_RATLIFF4_138
kV_1PH_PO_SS_POI | Single phase fault and sequence like previous | | | | **Table 2: Contingency List** | Cont.
No. | Cont.
Name | Description | |--------------|---|--| | 51 | FLT_51_G11040TAP_POOLVIL4_13
8kV_3PH_PO_SS_POI | Prior Outage of the GEN-2011-040 Tap – Sunnyside 138kV CKT 1. 3 phase fault on the GEN-2011-040 Tap (562038) to Pooleville (515130) 138kV CKT 1, near GEN-2011-040 Tap. a. Apply fault at the GEN-2011-040 Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. | | 52 | FLT_52_G11040TAP_POOLVIL4_13
8kV_1PH_PO_SS_POI | Single phase fault and sequence like previous | # 7.0 Simulation Results All faults were run for both summer and winter cases, and no tripping occurred in this study. Table 3 summarizes the results for all faults. Complete sets of plots for summer and winter cases are available on request. Based on the dynamic results and with all network upgrades in service, GEN-2011-040 and GEN-2012-004 did not cause any stability problems and remained stable for all faults studied. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and therefore, meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A. **Table 3: Contingency Simulation Results** | Cont.
No. | Cont.
Name | Description | Summer
2014 | Winter
2014 | Summer
2023 | |--------------|---|---|----------------|----------------|----------------| | 1 | FLT_01_SUNNYSD7_LES7
_345kV_3PH | 3 phase fault on the Lawton East Side (511468) to
Sunnyside (515136) 345kV CKT 1, near
Sunnyside. | Stable | Stable | Stable | | 2 | FLT_02_SUNNYSD7_LES
7_345kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 3 | FLT_03_SUNNYSD7_JOH
NCO7_345kV_3PH | 3 phase fault on the Johnson Co. (514809) to
Sunnyside (515136) 345kV CKT 1, near
Sunnyside. | Stable | Stable | Stable | | 4 | FLT_04_SUNNYSD7_JOH
NCO7_345kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 5 | FLT_05_SUNNYSD7_HU
GO7_345kV_3PH | 3 phase fault on the Hugo (521157) to Sunnyside (515136) 345kV CKT 1, near Sunnyside. | Stable | Stable | Stable | | 6 | FLT_06_SUNNYSD7_HU
GO7_345kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 7 | FLT_07_G11040TAP_RA
TLIFF4_138kV_3PH | 3 phase fault on the GEN-2011-040 Tap (562038)
to Ratliff (515129) 138kV CKT 1, near GEN-
2011-040 Tap. | Stable | Stable | Stable | | 8 | FLT_08_G11040TAP_RA
TLIFF4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | **Table 3: Contingency Simulation Results** | Cont.
No. | Cont.
Name | Description | Summer
2014 | Winter
2014 | Summer
2023 | |--------------|---|--|----------------|----------------|----------------| | 9 | FLT_09_G11040TAP_PO
OLVIL4_138kV_3PH | 3 phase fault on the GEN-2011-040 Tap (562038) to Pooleville (515130) 138kV CKT 1, near GEN-2011-040 Tap. | Stable | Stable | Stable | | 10 | FLT_10_G11040TAP_PO
OLVIL4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 11 | FLT_11_ARBUCKL4_JOLL
YVL4_138kV_3PH | 3 phase fault on the Arbuckle (515117) to
Jollyville (515118) 138kV CKT 1, near Arbuckle. | Stable | Stable | Stable | | 12 | FLT_12_ARBUCKL4_JOLL
YVL4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 13 | FLT_13_ARBUCKL4_MIL
LCKT4_138kV_3PH | 3 phase fault on the Arbuckle (515117) to Mill
Creek Tap (515121) 138kV CKT 1, near
Arbuckle. | Stable | Stable | Stable | | 14 | FLT_14_ARBUCKL4_MIL
LCKT4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 15 | FLT_15_ARBUCKL4_OAK
LAW4_138kV_3PH | 3 phase fault on the Arbuckle (515117) to
Oaklawn (515123) 138kV CKT 1, near
Arbuckle. | Stable | Stable | Stable | | 16 | FLT_16_ARBUCKL4_OAK
LAW4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 17 | FLT_17_ARBUCKL4_BLU
ERIV4_138kV_3PH | 3 phase fault on the Arbuckle (515117) to Blue
River (515133) 138kV CKT 1, near Arbuckle. | Stable | Stable | Stable | | 18 | FLT_18_ARBUCKL4_BLU
ERIV4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 19 | FLT_19_ARBUCKL4_BER
WYN4_138kV_3PH | 3 phase fault on the Arbuckle (515117) to Berwyn (515173) 138kV CKT 1, near Arbuckle. | Stable | Stable | Stable | | 20 | FLT_20_ARBUCKL4_BER
WYN4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 21 | FLT_21_ARBUCKL4_VAN
OSS4_138kV_3PH | 3 phase fault on the Arbuckle (515117) to Vanoss
Sub (515174) 138kV CKT 1, near Arbuckle. | Stable | Stable | Stable | | 22 | FLT_22_ARBUCKL4_VAN
OSS4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 23 | FLT_23_CARTER4_CHIKS
AW4_138kV_3PH | 3 phase fault on the Carter Tap (515138) to
Chickasaw (515171) 138kV CKT 1, near Carter
Tap. | Stable | Stable | Stable | | 24 | FLT_24_CARTER4_CHIKS
AW4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 25 | FLT_25_CARTER4_ARD
WEST4_138kV_3PH | 3 phase fault on the Ardmore West (515372) to
Carter Tap (515138) 138kV CKT 1, near Carter
Tap. | Stable | Stable | Stable | | 26 | FLT_26_CARTER4_ARD
WEST4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 27 | FLT_27_G13007TAP_CA
RTER4_138kV_3PH | 3 phase fault on the Carter Tap (515138) to GEN-
2013-007 Tap (560719) 138kV CKT 1, near
GEN-2013-007 Tap. | Stable | Stable | Stable | | 28 | FLT_28_G13007TAP_CA
RTER4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 29 | FLT_29_CHIKSAW4_FND
TION4_138kV_3PH | 3 phase fault on the Chickasaw (515171) to
Foundation (515162) 138kV CKT 1, near
Chickasaw. | Stable | Stable | Stable | | 30 | FLT_30_CHIKSAW4_FND
TION4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 31 | FLT_31_CHIKSAW4_TOT
AL4_138kV_3PH | 3 phase fault on the Chickasaw (515171) to Total
Petr. (515165) 138kV CKT 1, near Chickasaw. | Stable | Stable | Stable | | 32 | FLT_32_CHIKSAW4_TOT
AL4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | **Table 3: Contingency Simulation Results** | Cont.
No. | Cont.
Name | Description | Summer
2014 | Winter
2014 | Summer
2023 | |--------------|---|---|----------------|----------------|----------------| | 33 | FLT_33_G13007TAP_PRI
CESF4_138kV_3PH | 3 phase fault on the GEN-2013-007 Tap (560719) to Prices Fall (514814) 138kV CKT 1, near GEN-2013-007 Tap. | Stable | Stable | Stable | | 34 | FLT_34_G13007TAP_PRI
CESF4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 35 | FLT_35_POOLVIL4_FOX4
_138kV_3PH | 3 phase fault on the Fox (515131) to Pooleville
(515130) 138kV CKT 1, near Pooleville. | Stable | Stable | Stable | | 36 | FLT_36_POOLVIL4_FOX4
_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 37 | FLT_37_G11040TAP_SU
NNYSD4_138kV_3PH | 3 phase fault on the GEN-2011-040 Tap (562038) to Sunnyside (515135) 138kV CKT 1, near GEN-2011-040 Tap. | Stable | Stable | Stable | | 38 | FLT_38_G11040TAP_SU
NNYSD4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 39 | FLT_39_SUNNYSD4_UNI
ROY4_138kV_3PH | 3 phase fault on the Sunnyside (515135) to
Uniroyal (515137) 138kV CKT 1, near
Sunnyside. | Stable | Stable | Stable | | 40 | FLT_40_SUNNYSD4_UNI
ROY4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 41 | FLT_41_SUNNYSD4_LON
EGRV4_138kV_3PH | 3 phase fault on the Lone Grove (515144) to
Sunnyside (515135) 138kV CKT 1, near
Sunnyside. | Stable | Stable | Stable | | 42 | FLT_42_SUNNYSD4_LON
EGRV4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 43 | FLT_43_SUNNYSD4_ROC
KYPT4_138kV_3PH | 3 phase fault on the Sunnyside (515135) to Rocky Point (515164) 138kV CKT 1, near Sunnyside. | Stable | Stable | Stable | | 44 | FLT_44_SUNNYSD4_ROC
KYPT4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 45 | FLT_45_RATLIFF4_PRAR
PNT4_138kV_3PH | 3 phase fault on the Prairie Pt. (515134) to Ratliff (515129) 138kV CKT 1, near Ratliff. | Stable | Stable | Stable | | 46 | FLT_46_RATLIFF4_PRAR
PNT4_138kV_1PH | Single phase fault and sequence like previous | Stable | Stable | Stable | | 47 | FLT_47_SUNNYSD7_SUN
NYSD4_345_138kV_3PH | 3 phase fault on the Sunnyside 345kV (515136) to
138kV (515135) to 13.8kV (515405) CKT 1,
near Sunnyside 345kV. | Stable | Stable | Stable | | 48 | FLT_48_RATLIFF4_RATLI
FF2_138_69kV_3PH | 3 phase fault on the Ratliff 138kV (515129) to 69kV (515128) to 13.2kV (515752) CKT 1, near Ratliff 138kV. | Stable | Stable | Stable | | 49 | FLT_49_G11040TAP_RA
TLIFF4_138kV_3PH_PO_
SS_POI | Prior Outage of the GEN-2011-040 Tap –
Sunnyside 138kV CKT 1.
3 phase fault on the GEN-2011-040 Tap
(562038) to Ratliff (515129) 138kV
CKT 1, near GEN-2011-040 Tap. | Stable | Stable | Stable | | 50 | FLT_50_G11040TAP_RA
TLIFF4_138kV_1PH_PO_
SS_POI | Single phase fault and sequence like previous | Stable | Stable | Stable | | 51 | FLT_51_G11040TAP_PO
OLVIL4_138kV_3PH_PO
_SS_POI | Prior Outage of the GEN-2011-040 Tap –
Sunnyside 138kV CKT 1.
3 phase fault on the GEN-2011-040 Tap
(562038) to Pooleville (515130) 138kV
CKT 1, near GEN-2011-040 Tap. | Stable | Stable | Stable | | 52 | FLT_52_G11040TAP_PO
OLVIL4_138kV_1PH_PO
_SS_POI | Single phase fault and sequence like previous | Stable | Stable | Stable | #### 8.0 Power Factor Analysis A power factor analysis was not performed during this study. The power factor analysis from DISIS-2011-002 and DISIS-2012-001 each remain valid for this project. The facility will be required to maintain a 95% lagging (providing VARs) and 95% leading (absorbing VARs) power factor at the point of interconnection. The Interconnection Customer will be required to install capacitor banks to meet this requirement. #### 9.0 Conclusion The restudy showed that no stability problems were found during the summer or the winter peak conditions as a result of changing to the Vestas 2.0MW wind turbine generators. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A. A power factor analysis was not performed during this study. The power factor analysis from DISIS-2011-002 and DISIS-2012-001 each remain valid for this project. The facility will be required to maintain a 95% lagging (providing VARs) and 95% leading (absorbing VARs) power factor at the point of interconnection. The Interconnection Customer will be required to install capacitor banks to meet this requirement. With the assumptions outlined in this report and with all the required network upgrades from the GEN-2011-040 & GEN-2012-004 GIA in place, GEN-2011-040 & GEN-2012-004 should be able to reliably interconnect to the SPP transmission grid.