Western Farmers Electric Cooperative

From WFEC to OKGE

For a Reserved Amount Of 75MW
From 4/1/2004 To 4/1/2005

SPP Engineering, Tariff Studies

System Impact Study

Western Farmers Electric Cooperative has requested a system impact study to designate a New Network Resource in the WFEC Control Area for 75 MW to serve Network Load in the OKGE Control Area. The period of the service requested is from $4 / 1 / 2004$ to $4 / 1 / 2005$. The OASIS reservation number is 641186 . The principal objective of this study is to identify system constraints on the SPP Regional Tariff System and potential system facility upgrades that may be necessary to provide the requested service.

This study was performed for the WFEC to OKGE request in order to provide preliminary results identifying facility upgrades that may be required for the requested service. The preliminary study is performed with only confirmed reservations included in the models. The models do not include any reservations, even those with a higher priority, that are still in study mode. The results of the transfer analyses are documented in Tables 1 and $\underline{2}$ of the report. Table $\underline{1}$ summarizes the results of the Scenario 1 system impact analysis. Table 2 summarizes the results of the Scenario 2 system impact analysis. The results given in Tables 1 and $\underline{2}$ include upgrades that may be assigned to higher priority requests. If a facility identified for the WFEC to OKGE study is also identified for a study with higher priority, the facility will be assigned to the request with the highest priority. If the higher priority customer does not take service, the facility would then be assigned to the WFEC to OKGE request. The primary purpose of this preliminary study is to provide the customer with an estimated cost of the facility upgrades that may be required in order to accommodate the requested service. The preliminary study is performed by monitoring each facility at 90% of its rating. This is done to provide an estimate of possible overloads that may be assigned to the customer if requests with higher priority are accepted.

Eight seasonal models were used to study the WFEC to OKGE request for the requested service period. The SPP 2004 Series Cases Update 2, 2004 Summer Peak (04SP), 2004 Summer Shoulder (04SH), 2004 Fall Peak (04FA), 2004/05 Winter Peak (04WP), 2005 April Minimum (05AP), 2005 Spring Peak (05G), 2005 Summer Peak (05SP), and 2005 Summer Shoulder (05 SH) were used to study the impact of the request on the SPP system during the requested service period of $7 / 1 / 2004$ to $7 / 1 / 2005$. The chosen base case models were modified to reflect the most current modeling information. The cases were modified to reflect firm transfers during the requested service period that were not already included in the January 2004 base case series models. From the eight seasonal models, two system scenarios were developed. Scenario 1 includes confirmed West to East transfers not already included in the January 2004 base case series models, SPS Exporting, and the Lamar HVDC Tie flowing from SPS to Lamar, and ERCOT exporting. Scenario 2 includes confirmed East to West transfers not already included in the January 2004 base case series models, SPS Importing, and the Lamar HVDC Tie flowing from Lamar to SPS, and ERCOT importing.

PTI's MUST First Contingency Incremental Transfer Capability (FCITC) DC analysis was used to study the request. The MUST options chosen to conduct the System Impact Study analysis can be found in Appendix A. The MUST option to convert MVA branch ratings to estimated MW ratings was used to partially compensate for reactive loading.

These study results are preliminary estimates only and are not intended for use in final determination of the granting of service. These results do not include an evaluation of potential constraints in the planning horizon beyond the reservation period that may limit the right to renew service. Any solutions, upgrades, and costs provided in the preliminary System Impact Study are planning estimates only. The final ATC and upgrades required may vary from these results due to the status of higher priority requests, unknown facility upgrades and proposed transmission plans that will be identified during the facility study process, and the final results of the full AC analysis.

SPP will also review the possibility of curtailment of previously confirmed service and/or the redispatch of units as an option for relieving the additional impacts on the SPP facilities caused by the WFEC to OKGE request. It is the responsibility of the customer to reach an agreement with the applicable party concerning the curtailment of confirmed service and the redispatch of units. The curtailment and redispatch requirements would be called upon prior to implementing NERC TLR Level 5a. These options will be evaluated as part of the Facility Study. Execution of a Facility Study Agreement is now required to maintain queue position. The final upgrade solutions, cost assignments and available redispatch and curtailment options will be determined upon the completion of the facility study.

Table 1 - SPP facility overloads identified for the WFEC to OKGE transfer using Scenario 1

$\begin{aligned} & \text { Study } \\ & \text { Case } \end{aligned}$	$\begin{gathered} \text { From Area - To } \\ \text { Area } \\ \hline \end{gathered}$	Branch Overload	$\begin{gathered} \text { Ratin } \\ \text { g } \\ <M W \\ > \\ \hline \end{gathered}$	BC \% Loading	$\begin{array}{\|c} \text { TC \% } \\ \text { Loading } \\ \hline \end{array}$	\%TDF	Outaged Branch Causing Overload	$\begin{gathered} \text { ATC } \\ \text { <MW> } \end{gathered}$	Solution		Estimated Cost
04SP	OKGE-OKGE	55177 PARKLN 26955181 VALYVUT2 691	71	95.1	104.7	9.0950	55054 MAUD 26955090 STLOUIS2 691	38	Solution Undetermined		TBD
04SP	OKGE-OKGE	55177 PARKLN 26955181 VALYVUT2 691	71	91.6	98.3	6.3460	55044 SEMINOL4 13855055 MAUD 41382	75	Solution Undetermined		TBD
04SP	WFEC-WFEC	55810 ANADARK2 6955814 ANADARK4 1381	111	90.1	95.0	7.2490	55814 ANADARK4 13855923 GEORGIA4 1381	75	Solution Undetermined		TBD
04SP	OKGE-OKGE	55228 5TRIBES5 16155234 PECANCK5 1611	220	89.4	92.0	7.8310	55230 AGENCY 516155234 PECANCK5 1611	75	May be able to increase CTR (if relays will coordinate) at Five Tribes sub.	S	5 5,000
04SP	OKGE-OKGE	55234 PECANCK5 161 *B415 PECANCK1 11	366	93.4	95.1	8.0880	55224 MUSKOGE7 34555302 FTSMITH7 3451	75	Add 2nd 345/161 kV 369MVA transformer.	\$	3,000,000
04SP	OKGE-OKGE	55235 PECANCK7 345 *B415 PECANCK1 11	362	94.4	96.1	8.0880	55224 MUSKOGE7 34555302 FTSMITH7 3451	75	See Previous Upgrade Specified For Facility		
04SH	OKGE-OKGE	55235 PECANCK7 345 *B415 PECANCK1 11	364	98.8	100.5	8.3500	55224 MUSKOGE7 34555302 FTSMITH7 3451	51	See Previous Upgrade Specified For Facility		
04SH	OKGE-OKGE	55228 5TRIBES5 16155234 PECANCK5 1611	221	98.0	100.8	8.1900	55230 AGENCY 516155234 PECANCK5 1611	54	See Previous Upgrade Specified For Facility		
04SH	OKGE-OKGE	55234 PECANCK5 161 *B415 PECANCK1 11	366	98.0	99.7	8.3500	55224 MUSKOGE7 34555302 FTSMITH7 3451	75	See Previous Upgrade Specified For Facility		
04SH	OKGE-OKGE	55177 PARKLN 26955181 VALYVUT2 691	71	89.1	95.8	6.4160	55177 PARKLN 26955187 AHLOSTP2 691	75	Solution Undetermined		TBD
04FA	OKGE-OKGE	54861 MUSTANG4 13854896 MORGAN 41381	284	102.5	103.6	3.9450	54902 MCCLAIN4 13854929 PLVALLY4 1381	0	Increase CTR at Mustang sub.	\$	20,000
04FA	OKGE-OKGE	55177 PARKLN 26955181 VALYVUT2 691	71	83.6	91.5	7.5090	55177 PARKLN 26955187 AHLOSTP2 691	75	Solution Undetermined		TBD
04WP	OKGE-OKGE	55177 PARKLN 26955181 VALYVUT2 691	71	85.3	92.6	6.9090	55177 PARKLN 26955187 AHLOSTP2 691	75	Solution Undetermined		TBD
04WP	OKGE-OKGE	54861 MUSTANG4 13854896 MORGAN 41381	284	93.6	94.7	4.0020	54902 MCCLAIN4 13854929 PLVALLY4 1381	75	Solution Undetermined		TBD
05AP		NONE IDENTIFIED						75			
05G		NONE IDENTIFIED						75			
05SP	OKGE-OKGE	55177 PARKLN 26955187 AHLOSTP2 691	71	120.2	125.9	5.3300	55177 PARKLN 26955182 VALLYVU2 691	0	Solution Undetermined		TBD
05SP	WFEC-WFEC	55810 ANADARK2 6955814 ANADARK4 1381	111	86.7	91.6	7.2600	55912 FLETCHR4 13855923 GEORGIA4 1381	75	Solution Undetermined		TBD
05SP	OKGE-OKGE	55177 PARKLN 26955182 VALLYVU2 691	95	88.2	92.3	5.2250	55177 PARKLN 26955187 AHLOSTP2 691	75	Solution Undetermined		TBD
05SP	OKGE-OKGE	55234 PECANCK5 161 *B423 PECANCK1 11	365	92.6	94.3	8.0390	55224 MUSKOGE7 34555302 FTSMITH7 3451	75	See Previous Upgrade Specified For Facility		
05SP	OKGE-OKGE	55235 PECANCK7 345 *B423 PECANCK1 11	362	93.5	95.2	8.0390	55224 MUSKOGE7 34555302 FTSMITH7 3451	75	See Previous Upgrade Specified For Facility		
05SH	OKGE-OKGE	55177 PARKLN 26955187 AHLOSTP2 691	71	106.5	113.3	6.4130	55177 PARKLN 26955182 VALLYVU2 691	0	Solution Undetermined		TBD
05SH	OKGE-OKGE	55234 PECANCK5 161 *B423 PECANCK1 11	366	100.5	102.1	7.6860	55224 MUSKOGE7 34555302 FTSMITH7 3451	0	See Previous Upgrade Specified For Facility		
05SH	OKGE-OKGE	55235 PECANCK7 345 *B423 PECANCK1 11	363	101.5	103.1	7.6860	55224 MUSKOGE7 34555302 FTSMITH7 3451	0	See Previous Upgrade Specified For Facility		
05SH	OKGE-OKGE	55228 5TRIBES5 16155234 PECANCK5 1611	221	99.3	101.9	7.4280	55230 AGENCY 516155234 PECANCK5 1611	20	See Previous Upgrade Specified For Facility		
05SH	OKGE-OKGE	54861 MUSTANG4 13854896 MORGAN 41381	284	97.6	98.7	4.0270	54902 MCCLAIN4 13854929 PLVALLY4 1381	75	Solution Undetermined		TBD
									The cost may be higher due to additional facilities whose solutions will be determined during the Facility Study process		\$*
									Total Estimated Cost with Facilities Monitored @ 90\% Loading		+ 3,025,000
									Total Estimated Cost with Facilities Monitored @ 100\% Loading	\$	\$ 20,000

Table 2-SPP facility overloads identified for the WFEC to OKGE transfer using Scenario 2

Study Case	From Area - To Area	Branch Overload	Rating <MW>	$\begin{array}{\|c} \text { BC \% } \\ \text { Loading } \end{array}$	TC \% Loading	\%TDF	Outaged Branch Causing Overload	ATC <MW $>$	Solution	Estimated Cost	
04SP	AEPW-AEPW	53142 HUNTING2 6953202 MIDLREA2 691	36	104.1	111.1	3.3270	55262 AES 516155264 TARBY 51611	0	Solution Undetermined		TBD
04SP	AEPW-AEPW	53142 HUNTING2 6953147 NHUNTNT2 691	47	95.5	100.8	3.3270	55262 AES 516155264 TARBY 51611	63	Rebuild 0.24 miles of $4 / 0$ ACSR with 795 ACSR \& replace $4 / 0$ jumpers @ Huntington	\$	100,000
04SP	OKGE-OKGE	55177 PARKLN 26955181 VALYVUT2 691	71	87.5	97.1	9.0950	55091 KONOWAP2 6955093 JUMPRCK2 691	75	Solution Undetermined		TBD
04SP	OKGE-OKGE	55305 FTSMITH8 500 *B255 FTSMITH3 11	467	97.6	99.2	9.9580	55302 FTSMITH7 345 *B256 FTSMITH5 11	75	Convert Ft. Smith 161kv to 1-1/2 breaker design and install 2nd 500-161kV transformer bank. To be completed by OKGE, Estimated In-service date 12/1/2004		
04SP	OKGE-OKGE	55300 FTSMITH5 161 *B255 FTSMITH3 11	472	96.3	97.9	9.9580	55302 FTSMITH7 345 *B256 FTSMITH5 11	75	See Previous Upgrade Specified For Facility		
04SH	AEPW-AEPW	53142 HUNTING2 6953202 MIDLREA2 691	36	95.1	101.8	3.1720	55262 AES 516155264 TARBY 51611	55	Solution Undetermined		TBD
04FA	OKGE-OKGE	54861 MUSTANG4 13854896 MORGAN 41381	284	96.3	97.4	3.9450	54902 MCCLAIN4 13854929 PLVALLY4 1381	75	Solution Undetermined		TBD
04WP		NONE IDENTIFIED						75			
05AP		NONE IDENTIFIED						75			
05G		NONE IDENTIFIED						75			
05SP	OKGE-OKGE	55177 PARKLN 26955187 AHLOSTP2 691	71	115.3	120.9	5.3300	55177 PARKLN 26955182 VALLYVU2 691	0	Solution Undetermined		TBD
05SP	AEPW-AEPW	53142 HUNTING2 6953202 MIDLREA2 691	36	101.9	108.9	3.3530	55262 AES 516155264 TARBY 51611	0	Solution Undetermined		TBD
05SP	AEPW-AEPW	53142 HUNTING2 6953147 NHUNTNT2 691	47	94.5	99.8	3.3530	55262 AES 516155264 TARBY 51611	75	See Previous Upgrade Specified For Facility		
05SP	WFEC-WFEC	55810 ANADARK2 6955814 ANADARK4 1381	111	86.4	91.3	7.2600	55814 ANADARK4 13855923 GEORGIA4 1381	75	Solution Undetermined		TBD
05SH	OKGE-OKGE	55177 PARKLN 26955187 AHLOSTP2 691	71	101.4	108.2	6.4130	55177 PARKLN 26955182 VALLYVU2 691	0	Solution Undetermined		TBD
05SH	AEPW-AEPW	53142 HUNTING2 6953202 MIDLREA2 691	36	98.8	106.2	3.5500	55262 AES 516155264 TARBY 51611	12	Solution Undetermined		TBD
05SH	AEPW-AEPW	53142 HUNTING2 6953147 NHUNTNT2 691	47	89.0	94.6	3.5500	55262 AES 516155264 TARBY 51611	75	See Previous Upgrade Specified For Facility		
05SH	OKGE-OKGE	54861 MUSTANG4 13854896 MORGAN 41381	284	90.4	91.4	4.0270	54902 MCCLAIN4 13854929 PLVALLY4 1381	75	Solution Undetermined		TBD
									The cost may be higher due to additional facilities whose solutions will be determined during the Facility Study process		\$*
									Total Estimated Cost with Facilities Monitored @ 90\% Loading	\$	100,000
									Total Estimated Cost with Facilities Monitored @ 100\% Loading	\$	100,000

SPP IMPACT STUDY (SPP-2004-015-1P)
July 2, 2004
Page 4 of 5

Appendix A

MUST CHOICES IN RUNNING FCITC DC ANALYSIS

CONSTRAINTS/CONTINGENCY INPUT OPTIONS

1. AC Mismatch Tolerance -2 MW
2. Base Case Rating - Rate A
3. Base Case $\%$ of Rating - 90%
4. Contingency Case Rating - Rate B
5. Contingency Case $\%$ of Rating - 90%
6. Base Case Load Flow - Do not solve AC
7. Convert branch ratings to estimated MW ratings - Yes
8. Contingency ID Reporting - Labels
9. Maximum number of contingencies to process - 50000

MUST CALCULATION OPTIONS

1. Phase Shifters Model for DC Linear Analysis - Constant flow for Base Case and Contingencies
2. Report Base Case Violations with FCITC - Yes
3. Maximum number of violations to report in FCITC table - 50000
4. Distribution Factor (OTDF and PTDF) Cutoff -0.03
5. Maximum times to report the same elements -10
6. Apply Distribution Factor to Contingency Analysis - Yes
7. Apply Distribution Factor to FCITC Reports - Yes
8. Minimum Contingency Case flow change - 1 MW
9. Minimum Contingency Case Distribution Factor change - 0.0
10. Minimum Distribution Factor for Transfer Sensitivity Analysis - 0.0
